

Biometric Quality

The push towards zero error biometrics

15 June 2021
 Elham Tabassi

Quality assessment for error suppression

Quality problem: "The Last 1\%"
Or maybe "The Last 0.1% or 10% "
» Fraction of samples that should not be sent to the matcher

- Core algorithmic capability of current matchers are reaching their asymptote. Performance improvements should be and could be achieved by improving data quality and integrity.
- Quality assessment should be done based on only one instance most of the times (representation).
- Providing constructive feedback only possible if cause of poor quality is known

behavior

environment

Imaging/system

GIGO

Predictive of performance

A biometric quality assessment method derives a numerical quality value from an input biometric sample. The quality value is related to the biometric error rates that are likely to be realized when the sample is matched.

Uses of quality assessment

Subject

 presentation- Improper presentation detection
- Presentation attack detection

Acquisition device

- Hardware builtin. Quality in capture loop.
- 'peak' imaging capability
- No control on FTA - Hard to tweak to certain applications

Beyond scanner

- Automated (e.g., NFIQ) or visual by human
- Automated at client-side or backend
- Actionable feedback for recapture

Operator review

- Particularly for high value images
- It is expensive
- Requires training of operators + takes time

Allows for

- Adopting threshold for specific scenario
- Monitoring Seasonal variations, atypical collection site/queue/device, etc.
- Examine the bias of algorithms (age, aging, gender, etc.)

in development a fingerprint quality assessment algorithm

Technical

> Agnostic to comparison algorithm

- Capability to predict performance of different comparison algorithms
» Sufficient resolution
- How many levels are too many?

> Pairwise (no reference) quality
$-Q_{1}=F\left(\right.$ image $\left._{1}\right) ; Q_{2}=F\left(\right.$ image $\left._{2}\right) ;$
- $\mathrm{Q}_{12}=\mathrm{G}\left(\right.$ image $_{1}$, image $_{2}$);

> Calibration
- What FNMR is expected for each quality
level/score?
> Quality of quality
- Performance measures
> We really don't know.
> Robust method for labeling training data + ultimately visual inspection

Way forward

> Get a good representation of the current (state-of-the-art) comparison algorithm for training

- Include as many as possible + requires building community
> Devise + revise metrics and visualization techniques
- Perfancemear

in development a fingerprint quality assessment algorithm

Technical, etc.

> Data + Data sharing issues

- training (particularly low quality)
- testing (Images with specific defects)

》 Agnostic to application scenario

- `sufficient quality' is different for enrolment vs. verification
- Ditto 1:1 and 1:N.
» Meet unknown System requirements
- Timing, hardware, etc.
» Robust
- Zero failure to compute rate

Way forward

> Data cannot leave a site, but an open source algorithm can be ran on the data and Results can then be shared
$\square \gg \begin{aligned} & \text { Go for the best recommended by } \\ & \text { the community }\end{aligned}$ the community

》 Develop technical guidance and best practice

- In collaboration with end users of the particular application
» Good coding practice

NIST Fingerprint Image Quality (NFIQ)

NIST Fingerprint Image Quality (NFIQ)

NIST Fingerprint Image Quality (NFIQ)

\rightarrow NFIQ1.0 \rightarrow quality $=5$

NFIQ 2．0 Community

Team Members

＞NIST（US）
＞BSI（Germany）
＞BKA（Germany）
» Fraunhofer IGD
» MITRE（US）
＞Hochschule Darmstadt／CASED
＞Secunet Security Networks AG
＞NFIQ 2．0 Participants
＞．．．and the whole biometrics community

Sponsors

Homeland Security

Science and Technology

Federal Office for Information Security 方盛長

Bundeskriminalamt

NFIQ 2.0 FEATURES

NFIQ 1.0 features
Recommended Features in ISO/IEC 29794-4:2009 + our modifications
Surveyed literature + our modifications
Open source FingerJetFx minutiae extractor

~180 features

	Feature ID in Framework
	NFIQ1_Feature_1
	NFIQ1_Feature_2
	NFIQ1_Feature_3
	NFIQ1_Feature_4
	NFIQ1_Feature_5
	NFIQ1_Feature_6
	NFIQ1_Feature_7
	NFIQ1_Feature_8
	NFIQ1_Feature_9
	NFIQ1_Feature_10
	NFIQ1_Feature_11
	NFIQ1- Time_All
	FingerJetFX_MMinutiaeCount
	FingerJetFX_MinutiaeQuality_0
	FingersetFX_MinutiaeQuality_1
	FingerJetFX_MinutiaeQuality_2
	FingerJetFX_MinutiaeQuality_3
	FingersetFX_MinutiaeQuality 4
	FingerJetFX_MinutiaeQuality_5
	FingerJetFX_MinutiaeQuality_6
	FingerJetFX_MinutiaeQuality 7
	FingersetFX_MinutiaeQuality ${ }^{\text {8 }} 8$
	FingerJetFX-MinutiaeQuality 9
	FingerJetFX-MinutiaeQuality_10
	FingersetFXXAverageMinutiaeQual
	FingerJJtFX_R_ROBBIockArea FingerJetFX-ROIBlockAbs
	FingerJetFXX_ROIBlockAbs
	FingerJetFXX MinCount CoMM
	FingersetFX_MinCount_COMMMinRect300x20
	FingersetFX-MinCount_COMMinCircle200
	FingersetFX_MinCount_COMMinCirc
	FingersjetFX_MinCount_COMGrayRect200x2
	FingerJetFX_MinCount_COMGrayRect300x2
	FingerJetFX_MinCount_COMGrayCi
	FingerJetFX_MinCount_COMGrayCircle250
	FingerJetFX_Time_All
	FingersetFX_Time
	Mu
	MMB
	Sigma
	Mu_Time
	MMB_Time
	Sigma_Time
	ImgProcROIBlockArea
	ImgProcRoiblockAbs
	ImgProcROIPixelArea
	Img ProckolipixelAbs
	ImgProcROIArea_Mean
	ImgProcROIArea_StdDev
	ImgProcROIArea OCL
	ImgProcROIArea_-Time
	ImgProcROIArea_OCL_Time
	FJFXPos_Mu_AverageMinutiaeQuality
	FJFXPos_Mu_MinutiaeQualit__0
	FJFXPos_Mu_MinutiaeQuality_1
	FJFXPos_Mu_MinutiaeQuality_2
	FJFXPos Mu Minutiae Quality ${ }^{2}$
	FJFXPos_COMMin_MMB_224
	FJFXPos_OCL_AverageMinutiaeQuality

Percentage of minutiae quality values (based on OCL value around each minutiae location) between 0 and 20
Percentage of minutiae quality values (based on OCL value around each minutiae location) between 20 and 40
Percen Percentage of minutiae quality values (based on OCL Lalue around each minutiae location) between 20 and 40
Percentage of minutiae euality values (based on OCL value around each minutiae location) between 40 and 60
Percentage of mint Percentage of minutiae quality values (based on OCL value around each minutiae location) between 60 and 80
Percentage of minitiequality values (based oc OCL value around aech minutiae ocaction between 80 and 100

$$
\begin{aligned}
& \text { Average of minutiae quality that was computed based on block-wise LCS } \\
& \text { Average of mintiequality that was computed based on bock-wise } \\
& \text { Average of minutiae quality that was computed based on block-wise values }
\end{aligned}
$$

Average of minutiae quality that was computed based on block-wise RVU
Average of minutiae quality that was computed based on block-wise values returned by the low flow map
Speed computation of minutiae quality computation values
Speed computation of minutiae euality computation values
Orientation Certainty Level (OCLL) of yole image
Speed computation of OCL computation
Speed compertainty Level (OCL) of whol
Number of blocks that have computation
Number of blocks that have high contrast according to NFIQ1 low contrast map (re-implemented using OpenCV)
Speed computation of quality map computation (low contrast map, enhanced orientation map, high curve map)
Speed computation of quatiry map compulation (Iow contrast map, enta
Speed computation of orientation map (without ROI fitterig)
Speed computation of orientation map determination with ROI filtering
Speed computation of enhanced quality map computation (ennanceec low contrast map, enhanced orientation map, low flow map, hig9
Speed computation of avvancd uuality map computation (enhanced low contrast map, enhanced orientation map, high curve map)

 Relative number of quality map blocks that have an assigned value of 1 (similar but not identical to NFIQ1 quality map with block size
Relative number of quality map blocks that have an assigned aviue of 2 similiar unt tont identical o NFIQ quality map with lock size
 Relative number of quality map blocks that have an assigned value of 4 (similar but not identical to NFIQ1 quality map with block size
Number of high contrast lococs according to the computation results of the ennanced contrast map
Average of block-wise inhomen Average of block-wise inhomogenety values returned by enhanced contrast map
Average of block-wise smoothess values returned by enhanced contrast map
Average of block--wise unifoormity values returned by enhanced contrast map
Average of block-wise quality values based on the returned inhomogenety, uniformity and smoothness values of the enhanced contra
Speed computation of enhanced contrast map computation Speed computation of ennanced contrast map computation
Number of high flow block determined bthe enhanced dualty map (low flow map)
Number of low flow blocks determined by the enhanced quality map (low flow map)
Number of low flow blocks determined by the enhanced quality map (low flow map)
Number of foregrondo locks based on the quality map computation (similar but not identical to NFIQ1 quality map with block size 8)
Relative number of enhanced quality map blocks that have an assigned value of (simiar but not identical to NFIQ1 quality map with
 Relative number of enhanced quality map blocks that have an assigned value of 3 (similar but not identical to NFIQ1 quality map with
Relative number of ennanced quality map blocks that have an assigned value of 4 (similar ubt ton identical to NFIQ1 quality map with Number of foreground blocks based on the quality map computation (similiar but not identical to NFIQ1 quality map with block sizz 8)
Relative number of advanced quality mep blocks that have an assigned value of 1 (simiar but not identical to NFIQ1 quality map with
Relative number of advanced quality map blocks that have an assigned value of 2 (similiar but not identical to NFIQ1 quality map with Relative number of advanced quality map blocks that have an assigned value of 3 (similar but not identical to NFIQ1 quality map with
Relative number of advanced quality map blocks that have an assigned value of 4 (similar but not identical to NFIQ1 quality map with Relaive number of advanced quatily map blocks that tave an assigned value of
Number of figh flow blocks determine by the low fow map (block size 24×24)
Speed computation of low flow map with block size 24×24
Speed computation of low fiow map with block size 24×24 (block size 32×32)
Number of hig fiow blocks determined by to low map
Speed computation of low flow map with block size 32×32
Gabor feature
Gabor Shen featur
Gabor Shene featur
Local Clarity Scor
Local Clarity Socorere (LCS) faature
Orientation Certainty Level
Orientation Certainty Level ((COLL) feature based on Sobel filters
Orientation Certainty Level (OCL) feature based on centered difien

Ridge Valley Uniformity RVV) feature with padding (block size 32)
Orientation Flow (OF) feature
Radial Power Spectrum (RPS) feature
Frequency Domain Analysis (FDA) feature

NET
National institute of U.S. Department of Commerce

Feature selection

Feature selection

Feature selection

NFIQ 2.0 Features

NFIQ 2.0 Features

Machine LeArning

We examined:

Random Forest

Support vector machine
K-nearest neighbor

Machine Learning

Random Forest

» Ensemble classifier using stochastic process

- Uses vote to determine class memberships
- Provides class probability in predictions
- Analysis of features importance and their ranking
- We used this to do our final feature selection

Two class prediction

> High vs. Low performers

- 1: High performers are images that result in high genuine scores and have NFIQ1=1 with activation score >0.7.
- genscore $>$ CDF $^{-1}(0.9) \&$ NFIQ1. $0=1$
- 0: Low performers are images that result in false reject and have NFIQ 1.0=5 with activation score > 0.9.
- FRR at Threshold at FMR=0.0001
- Training data: intersection of images in Class 0 (or Class 1) across all providers
- Quality score is the probability that a given image belongs to class 1.
> Map quality score to recognition rate.

Training
Features: image processing + \#minutiae + minutiae quality
~3500 samples in each of the low and high performers classes
1000 trees in forest
\section*{Test}
75000 comparison scores

So, Does It Work?

NFIQ 2.0 vs genuine score

Pairwise performance

Enrolment Random Forest

NFIQ 2.0 predictive of performance

Comparator: 1T - Finger: 07

NFIQ 1.0 VS NFIQ 2.0

NFIQ 1.0 vs NFIQ 2.0

NFIQ 1.0 vs. 2.0 performance

NFIQ 1.0 vs. 2.0 performance

At a glance

NFIQ 1.0

» 5 levels.

- 1(highest) to 5(lowest)
» 11 features
» Comparison scores of 3 algorithms used for training
» 3400 training images
» Neural network
» ~300 msec per image

NFIQ 2.0
» 100 levels

- 0(lowest) to 100(highest)
» 14 (69) features
» Comparison scores of 7 algorithms used for training
» ~5000 training images
» Random forest
» ~ 120 msec per image
» Actionable quality
- Flags for blank image, low contrast
» Design for NFIQ Mobile

Tools for easier adaption and migration

Calibration :: setting quality threshold

General: based on large scale operational data

> Calibration:

- general calibration curves or tables for NFIQ $1.0 \rightarrow$ NFIQ 2.0.
> Decision Table
- For enrollment and verification quality threshold setting
- Tabulation of estimated rejection rate and improvement in FNMR for each value of NFIQ 2.0 (i.e., [0,100]).

On-demand: based on application-specific data

> Calibration

- software tools and technical guidance on how to compute calibration curves.
» Decision Table
- Ditto above.
> This allows for optimal calibration and decision making considering data properties.

Elham Tabassi
tabassi@nist.gov
THANK YOU.

