Warning: Copyright Notice

This presentation and its content are proprietary and copyright protected and shall not be copied or made public by any means, without prior written approval of the authors.

Contactless Fingerprint Sample Quality: Prerequisites for the Applicability of NFIQ2.0

Jannis Priesnitz

Hochschule Darmstadt, ATHENE, da/sec Research Group

virtual, June 16, 2021

Contactless Fingerprint Sample Quality: Prerequisites for the Applicability of NFIQ2.0

- ▶ Is NFIQ2.0 a predictor for contactless fingerprint images?
 - ▶ NFIQ2.0 works well on contact-based datasets.
- ▶ Which prerequisites must be satisfied so that NFIQ2.0 can assess the quality?
 - Huge difference between contactless and contact-based data.

Quality Assessment on Fingerprint Data

Considered Datasets

Preprocessing Pipeline

Evaluation Method

Results

Interpretation

Analysis on a self-captured Database

Quality Assessment on Fingerprint Data

Contact-based and contactless Fingerprint recognition

Figure: Contact-based sample

Figure: Contactless sample

Jannis Priesnitz

Workshop on Fingerprint Image Quality (NFIQ 2.1) - virtual, June 16, 2021

Quality Assessment on Fingerprint

Data

Fingerprint Quality Assessment

D INTERNET-SECURITY

- Crucial part for a high biometric performance
- Function that maps an input image to a numeric value

NFIQ2.0

da/ser

- Widely used for contact-based fingerprints
- Uses various different features (eg. size, contrast, minutiae count)
- Random forest classifying the sample quality based on the different features

[5/25]

Considered Performance Evaluation Datasets

- Fingerprint Verification Competition (FVC2006)
- MCYT fingerprint subcorpus
- Hong Kong Polytechnic University contactless 2D to contact-based 2D fingerprint images database version 1.0 (PolyU)
- IIITD SmartPhone Fingerphoto Database v1 (ISPFDv1)

Considered Datasets

FVC2006

Subset	Туре	Sensor	Color	Resolution	Instances / Samples
DB2-A	contact-based	optical		400×560	140 / 1,680
DB3-A		thermal	grayscale		
DB4-A	synthetic	—			

Figure: DB2-A

Figure: DB3-A

Figure: DB4-A

MCYT fingerprint subcorpus

Subset	Туре	Sensor	Color	Resolution	Instances / Samples
dp	contact-based	optical	gravscale	$ \begin{array}{c c} $	3 300 / 30 600
pb		capacitive	grayscale		3,300 / 39,000

Figure: db

Figure: pb

Considered Datasets

PolyU CL2D to CB2D

Subset	Туре	Sensor	Color	Resolution	Instances / Samples
CB-S1		ontical	gravecalo	328×356	336 / 2,016
CB-S2	contact-based	optical	grayscale		160 / 960
CL-S1	1 contactloss comoro	PCP	1 400 \> 000	336 / 2,016	
CL-S2	contactiess	Camera	NGD	1,400×900	160 / 960

Considered Datasets

ISPFDv1

Subset	Туре	Sensor	Color	Resolution	Instances / Samples
LS	contact-based	optical	grayscale	544×253	128 / 1,024
NI					
NO	contactless	iPhone 5	RCB	3 261 ~ 2 118	128 / 1 024
WI	contactiess	ir none 5	RGD	5,204 ~ 2,440	120 / 1,024
W0					

Preprocessing Pipeline

Preprocessing Pipeline executed on the contactless datasets

Figure: Proposed processing pipeline

Segmentation and cropping is executed only on the ISPFDv1 dataset.

Preprocessing Pipeline

Processed Samples

Figure: Processed ISPFDv1 NI sample

Figure: Processed PolyU CL-S1 sample

Biometric Performance Prediction

- Probability distribution over NFIQ2.0 scores
- Error-versus-Reject Curves (ERCs)
 - Correlation between quality scores and comparison score
 - Sort samples by quality score (descending)
 - Consider the first one as reference and all other as probe
 - Start at a FNMR of 10%
 - Iteratively exclude a portion of samples and recompute FNMR
- ► Assumption: FNMR decreases if quality measure is a good predictor
 - ▶ Partial Area Under Curve (PAUC) indicates prediction performance

FVC2006

Figure: PDF FVC2006

Figure: ERC FVC2006

MCYT

Results

Figure: ERC MCYT

PolyU

Results

Figure: PDF PolyU

Figure: ERC PolyU

ISPFDv1

Figure: PDF ISPFDv1

Figure: ERC ISPDFDv1

NFIQ2.0 Score distribution, EERs and ERCs

DB	Subset	Preproc.	Avg. NFIQ2.0 score	EER (%)	ERC AUC
	DB2-A	_	36.07 (±9.07)	0.15	0.01261
FVC06	DB3-A	—	40.92 (±12.85)	6.71	0.00883
	DB4-A	—	27.80 (±12.28)	2.90	0.01261
MCVT	dp	-	37.58 (±15.17)	0.48	0.00868
NIC T T	pb	—	33.02 (±13.99)	1.35	0.00970
	CB-S1	-	42.64 (±11.96)	0.67	0.00890
PolyU	CB-S2	_	40.97 (±13.14)	1.75	0.00893
FolyO	CL-S1	proposed	47.71 (±10.86)	3.91	0.00998
	CL-S2	proposed	47.08 (±13.21)	3.17	0.01106
ISPFDv1	LS	_	58.19 (±7.70)	0,51	0.01275
	NI	proposed	9.62 (±7.65)	34.64	0.01205
	NO	proposed	14.70 (±9.39)	28.12	0.01214
	WI	proposed	16.86 (±7.02)	35.67	0.01465
	WO	proposed	$18.60 (\pm 9.77)$	25.29	0.01246

Our Investigations show

- Predictive power is low on datasets of homogeneous quality
 - Especially if no significant performance gains can be expected
 - Cmp.: e.g. FVC2006 DB2-A, ISPFDv1
- Predictive power is high on datasets of heterogeneous quality
 - ► Cmp.: e.g. FVC06 DB3-A, MCYT dp or PolyU CL-S2
 - Under these conditions the predictive power of NFIQ2.0 is slightly worse on contactless samples

Further we conclude:

- ▶ NFIQ2.0 can be a useful quality assessment for contactless fingerprints
- Predictive power depends on the employed preprocessing

Experiments on own Database

- Android app running on a smartphone
- Automatic capturing of the four inner-hand fingers
- On-device processing
- On-device NFIQ2.0 for integrated quality assessment
- Remote feature extraction and comparison

J. Priesnitz, et al. "Mobile Touchless Fingerprint Recognition: Implementation, Performance and Usability Aspects." arXiv preprint, 2021.

Experimental Setup

Туре	Setup	Device	Subjects	Rounds	Samples
Contactless	Box	Google Pixel 4	28	2	448
Contactless	Tripod	Huawei P20 Pro	28	2	448
Contact-based	-	Crossmatch Guardian 100	29	2	464

Figure: Contactless tripod

Figure: Contactless box

Figure: Contact-based setup

ATHENE National Research Cente for Applied Cybersecurity

Results

da/sec

RESEARCH GROUP

BIOMETRICS AND INTERNET-SECURITY

Figure: Averaged NFIQ2.0 scores obtained from the considered databases.

Results

Capturing device	Fingers	Avg. NFIQ2.0 score	EER (%)
	index fingers	$53.16~(\pm~11.27)$	7.14
Contactloss Boy	middle fingers	$45.59~(\pm~11.06)$	6)8.919)7.14
Contactiess Dox	ring fingers	$41.57~(\pm~12.89)$	
	little fingers	$38.88~(\pm~14.21)$	21.43
	index fingers	$41.38~(\pm~14.29)$	21.81
Contactless Tripod	middle fingers	$36.68~(\pm~13.01)$	28.58
contactiess mpou	ring fingers	$34.68~(\pm~14.28)$	29.62
	little fingers	$31.79~(\pm~14.63)$	38.98
	index fingers	$44.06~(\pm~17.53)$	8.62
Contact-based	middle fingers	$41.08~(\pm~19.71)$	1.72
Contact-based	ring fingers	$37.68~(\pm~17.08)$	6.90
	little fingers	$29.78~(\pm~19.94)$	13.79

Results

Capturing device	Fingers	Avg. NFIQ2.0 score	EER (%)
	index fingers	$53.16~(\pm~11.27)$	7.14
Contactless Box	middle fingers	$45.59~(\pm~11.06)$	8.91
Contactiess Dox	ring fingers	$41.57~(\pm~12.89)$	7.14
	little fingers	$38.88~(\pm~14.21)$	21.43
	index fingers	$41.38~(\pm~14.29)$	21.81
Contactless Tripod	middle fingers	$36.68~(\pm~13.01)$	28.58
contactiess mpou	ring fingers	$34.68~(\pm~14.28)$	29.62
	little fingers	$31.79~(\pm~14.63)$	38.98
	index fingers	$44.06~(\pm~17.53)$	8.62
Contact-based	middle fingers	$41.08~(\pm~19.71)$	1.72
Contact-based	ring fingers	$37.68~(\pm~17.08)$	6.90
'	little fingers	$29.78~(\pm~19.94)$	13.79

Results

Capturing device	Fingers	Avg. NFIQ2.0 score	EER (%)
	index fingers	$53.16~(\pm~11.27)$	7.14
Contactless Box	middle fingers	$45.59~(\pm~11.06)$	8.91
Contactiess Dox	ring fingers	$41.57~(\pm~12.89)$	7.14
	little fingers	$38.88~(\pm~14.21)$	21.43
	index fingers	$41.38~(\pm~14.29)$	21.81
Contactless Tripod	middle fingers	$36.68~(\pm~13.01)$	28.58
contactiess mpou	ring fingers	$34.68~(\pm~14.28)$	29.62
	little fingers	$31.79~(\pm~14.63)$	38.98
	index fingers	$44.06~(\pm~17.53)$	8.62
Contact-based	middle fingers	$41.08~(\pm~19.71)$	1.72
Contact-Dased	ring fingers	$37.68~(\pm~17.08)$	6.90
	little fingers	$29.78~(\pm~19.94)$	13.79

In our experimental setup...

da/sec

- ▶ NFIQ2.0 scores drop from index finger to little finger
 - The drop is not reflected in the comparison scores
- Contactless samples of the same subject show comparable NFIQ2.0 scores but different comparison scores
 - ▶ Predictive power of NFIQ2.0 for unoptimized contactless samples is rather low
- Samples where not optimized for NFIQ2.0

Thank you for your attention!

Questions?

Publications related to this talk:

- ▶ J. Priesnitz, et al. "Touchless Fingerprint Sample Quality: Prerequisites for the Applicability of NFIQ2.0" BIOSIG, 2020.
- J. Priesnitz, et al. "Mobile Touchless Fingerprint Recognition: Implementation, Performance and Usability Aspects." arXiv preprint, 2021.