Introducing tools to retrain the classifier
About HID (formerly Crossmatch is part of HID)

HID Global powers the trusted identities of the world’s people, places and things
DISCLAIMER: Be careful what you wish for!

• When adapting the NFIQ 2, potential interoperability problems needs to be addressed!

NFIQ 2 ≠ NFIQ 2

• Revised NFIQ 2 contains enhancements to mitigate interoperability problems (classifier model as part of the version number)
• The interoperability risk still exists!
How does a quality assessment work?

• Before we discuss improvements, we need to understand how it works
• Need to open the “black box”
• Understand the architecture of NFIQ 2

Our goal: providing tools for advanced users
Inside NFIQ 2

- NFIQ 2 uses 69 features which were manually selected and validated
- The classification is done with a random forest model
- The tools will allow to retrain the classifier
- The selected features will be kept unchanged

This slide uses artificial prints!
Inside the Random Forest

- Random forest is a collection of decision trees (forest)
- Each decision tree uses a random subset of the feature vector (feature bagging)
- Every decision tree has one vote for the final classification

NFIQ 2 random forest parameters

- Binary classification
- 100 decision trees (score values from 0 … 100)
- Active features per decision tree 10 (out of 69)
The training process

Ground Truth Privacy Data

Training preparation Anonymized data

Training process Anonymized data

Re-Seed Randomizer (Pseudo RNG)

Training Set

Extracted Features

Annotated Features

Training

Probe

OK ?

RF Model

Probe Set

Extracted Features

Annotated Features
Training tools inventory

- Feature extraction
 - Command line executable “nfiq2-calc-features.exe”
 - Using the same function of NFIQ 2, but without using classification
 - Result: semicolon separated string with the sorted feature values (CSV)

- Input preparation and feature annotation
 - Out of scope, must be provided by the operator
 - Sample implementation based on a shell script file
 - Appending the ground truth classification (0,1) to the CSV feature string from the feature extraction
 - Collect all CSV strings into a text file (line by line)

- Training and Probing
 - Command line executable “nfiq2-train-classifier.exe”
 - Performs iterative operation
 - Train
 - Probe
 - Repeat if convolution matrix contains errors

Adapt as needed
Source code repository (GIT)

- Using the original NFIQ2 from NIST as Git Submodule to de-couple dependencies
- Link to the NFIQ2-Extended Repository
 - Accessible for Biometric Experts of ISO/IEC SC37

Git Repository NFIQ2-Extended

build-scripts
Convenient shell scripts for building

cli-example
Source code for the command line executables

mingw-std-threads
Git Submodule
Origin: https://github.com/meganz/mingw-std-threads.git

NFIQ2Core
Git Submodule
Origin: https://github.com/usnistgov/NFIQ2.git

NFIQ2Training
Source code for the training process

sample-data
Artificial sample data for testing
Build artefacts

- The build artefacts will also contain the libraries from the NFIQ2 core build

```
Git Repository NFIQ2-Extended

build/<platform>
Temporary build folder used by CMake

dist/<platform>
Build results/artefacts

bin
CLI executables and NFIQ2 Library (DLL), shell scripts

cfg
Configuration files (RF model, training parameters)

data
Artificial sample data

include
NFIQ2 core headers

lib
NFIQ2 core libraries
```
Demonstration

Prepare the probe and training data

- shell script: `calc-features.sh`
- data: artificial sample data for training and probe
- ground truth: derived from sample data file name (normal:=1, wet and dry:=0)
- output: csv files for training and probe
Demonstration

Perform training

- shell script: `train-classifier.sh`
- data: `csv files for training and probe`
- parameters: `nfiq2_training.cfg`
- output: `training details, convolution matrix, RF model`
Demonstration

Training output

- output: iteration, training error, out of bag error and feature importance
Demonstration

Probe output

- output: *convolution matrix and error rates*

```
using 2350 sets of probe data

<table>
<thead>
<tr>
<th>Predicted</th>
<th>Expected True</th>
<th>Expected False</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>720</td>
<td>0</td>
</tr>
<tr>
<td>False</td>
<td>0</td>
<td>1440</td>
</tr>
</tbody>
</table>

false positive error rate := 0.00 %
false negative error rate := 0.00 %
total error rate := 0.00 %
```
Demonstration

Probe output

- output: score histogram, exported RF model (with hash)
Summary

Achievements

• Common training tools for the NFIQ2 are available
• Re-training the classifier is considered as a task for advanced users
• Re-training shall only be executed if the necessity was proven and justified
• Consider potential interoperability impact before attempting a re-training
• It is recommended to inform ISO/IEC JTC1 SC37 and NIST about any retraining attempt

Next steps

• Consider together with ISO/IEC JTC1 SC37 and NIST on how to make the repository for the training tools available

Out of scope

• Modification of the NFIQ2 feature vector
• Modification of the training tools to fetch the data from databases etc.
Question and Answers

Ralph Lessmann
Director Software Solutions
HID Global

Mobile +49 (0) 172 370 1615
ralph.lessmann@hidglobal.com

Cross Match Technologies GmbH
Unstrutweg 4
D-07743 Jena

Affiliations
European Association for Biometrics
Chair of the Industry Special Interest Group
ISO/IEC JTC1 SC 37 (National Body Germany)
Working Group 3 & 4
Thank you
hidglobal.com