Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x

Kiran Raja

Norwegian Biometrics Laboratory, https://www.ntnu.edu/nbl Norwegian University of Science and Technology (NTNU)

EAB WORKSHOP ON FACE IMAGE QUALITY - Nov, 2021 Nov 16, 2021

NORWEGIAN BIOMETRICS LABORATORY

Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x

- Proposal based on work published in 2017
 - Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In *5th* International Workshop on Biometrics and Forensics *(IWBF)*, pp. 1-6. IEEE, 2017.

Assessing Face Image Quality for Smartphone based Face Recognition System

Pankaj Wasnik, Kiran B. Raja, Raghavendra Ramachandra, Christoph Busch {pankaj.wasnik; kiran.raja; raghavendra.ramachandra; christoph.busch}@ntnu.no Norwegian Biometrics Laboratory, NTNU - Gjøvik, Norway

Abstract-In recent years, the popularity of smartphones has increased massively as a personal and authentication device. Face based biometrics is being used to secure the device and control access to several different services via smartphones such as payment gateways etc. Thus, to maintain the reliability and to obtain better verification performance, there is a need to adopt the standards recommended for face sample quality. In this paper, we present an evaluation of face image quality assessment using well-established ISO standards on the images collected using smartphones. In this work, we constructed a new database of 101 individuals with 22 frontal face images with different facial pose angles, illumination and at five different distances between the subject and the mobile device. We evaluate the existing quality metrics and further propose a new quality metric based on vertical edge density that can robustly estimate the pose variations and improves the quality estimation of a face image. The proposed method is evaluated for reliable estimation of the quality for smartphone face biometrics.

Keywords: Biometrics, Smartphone based biometrics, face recognition, image quality assessment

I. INTRODUCTION

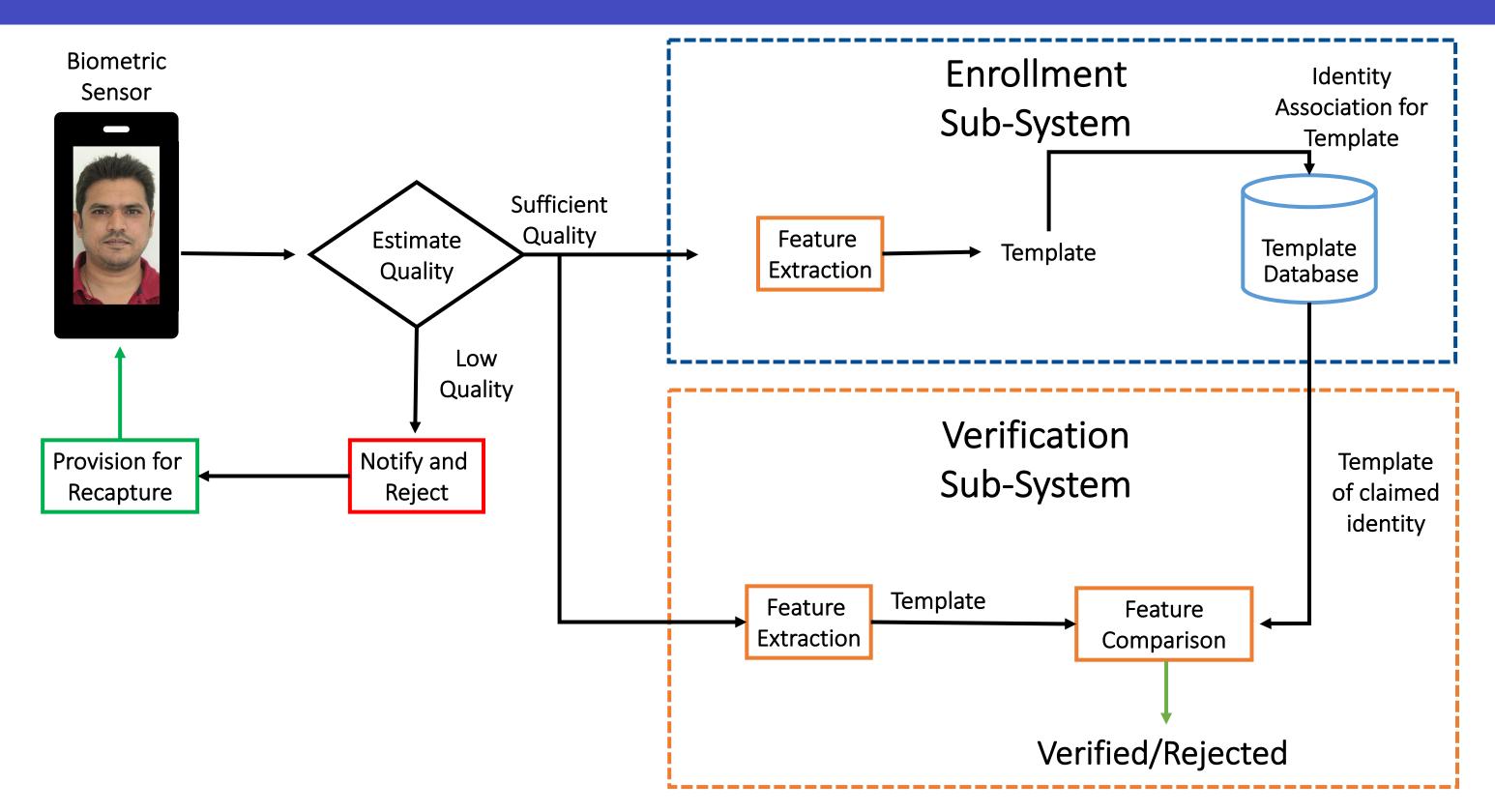
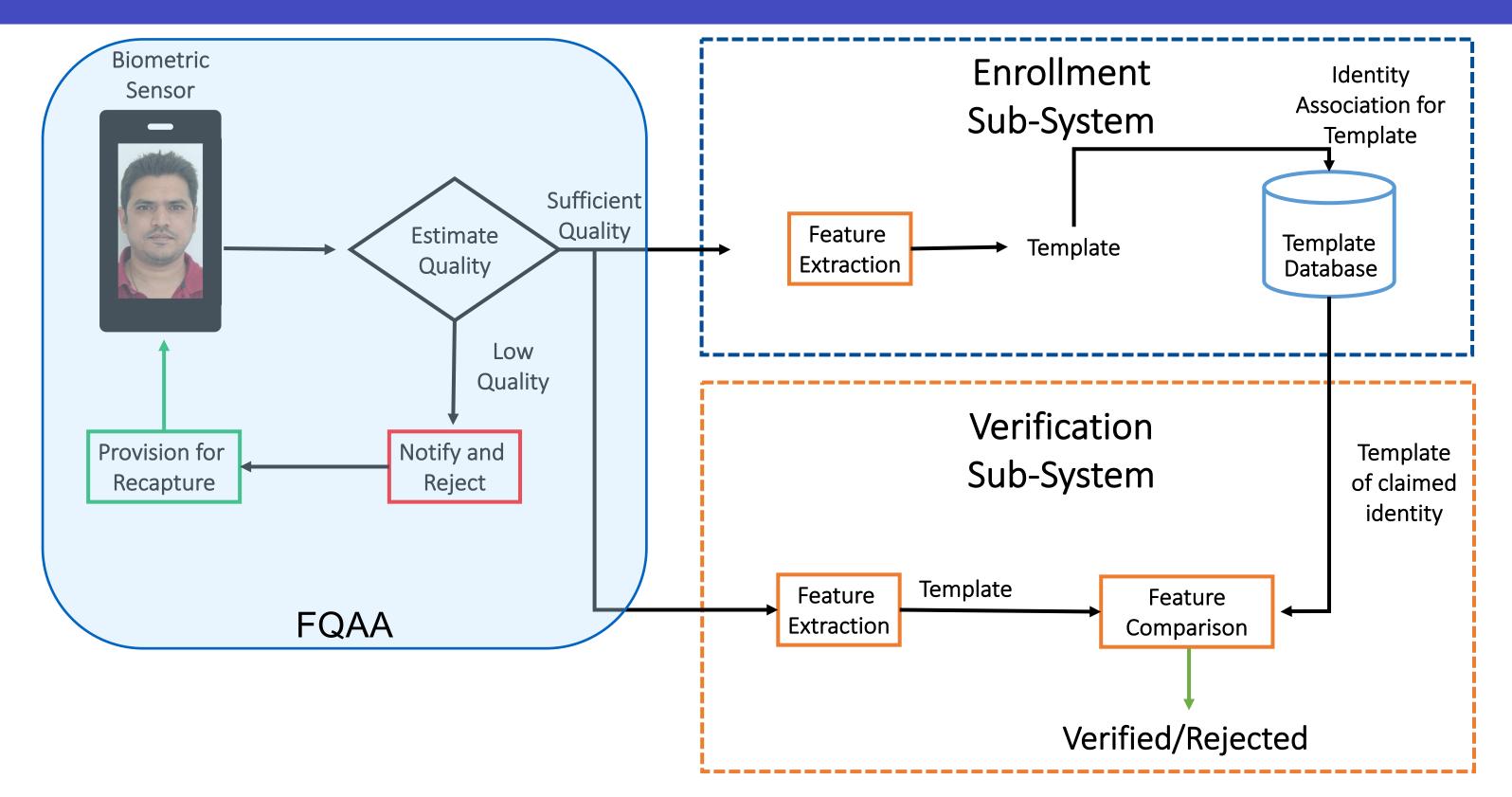
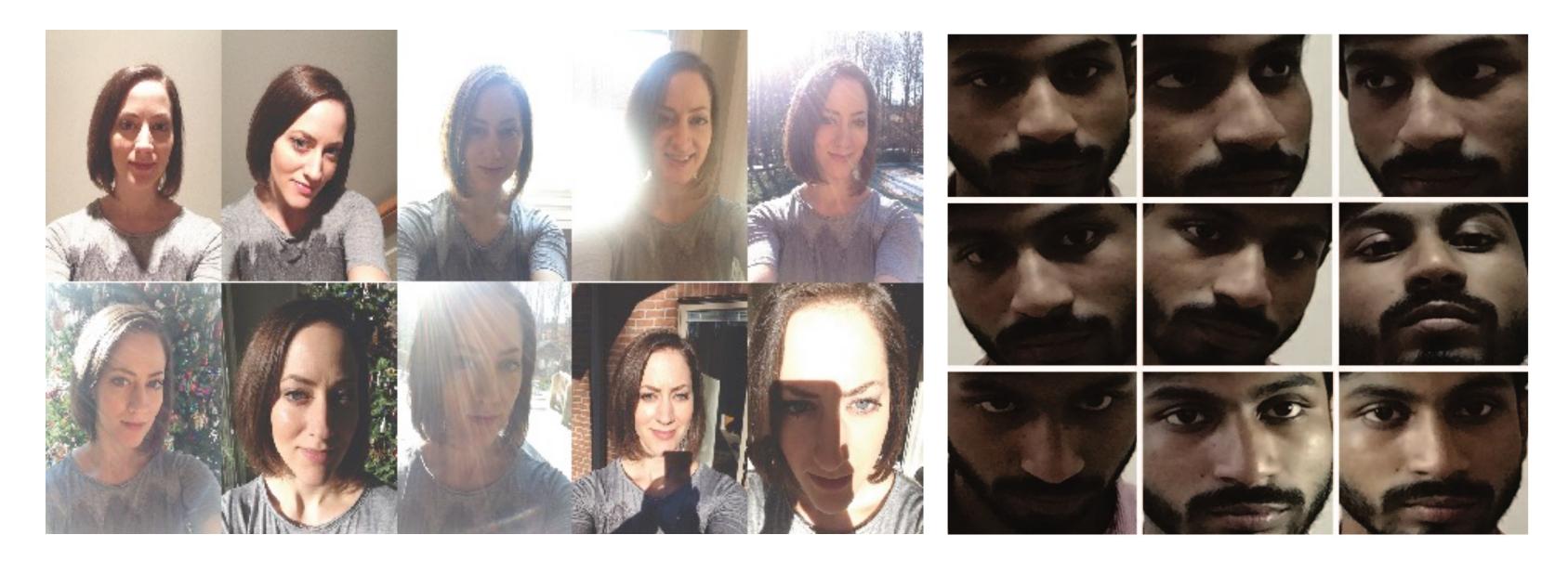

Major finance applications on smartphones such as Apple-

Fig. 1: Face images with different pose angles and illuminatio


Pay and GooglePay have actively started to employ biometrics scores using different approaches such as "bottom-up", "topfor verifying the customers. Similarly, face recognition is down" and "combined" manner. The proper understanding being used in different types of mobile applications such of the quality score calculations respecting the character of as mobile device security, mobile payment gateways, etc. In the source (i.e. the biometric characteristic) as well as the this kind of applications user's face image is captured in a concepts of fidelity and utility can be achieved using the relaxed or unconstrained environment. The number of factors defined standards. The report ISO/IEC TR 29794-4 [6] such as ambient illumination, pose due to different ways generalizes the methodologies for fingerprint images. Further, of interacting with mobile device and distance of imaging the report ISO/IEC TR 29794-5[4] describes the methodresults in varying quality face images. The quality factors ologies for facial images to control the sample quality during of face images obtained using smartphones can be closely the enrolment process for many of the commercial applicacorrelated to quality factors seen with traditional Face Recog- tions. It also gives insights about the calculations of pose and nition System (FRS). Hence they are prone to the similar illumination symmetry of the input image. In the prior studies problems confirmed by series of face recognition vendor on face image quality, most of the work is based on image tests such as an uncontrolled variation of illumination, pose, properties such as brightness, contrast, and sharpness, etc. [7]. and age variations. These are three major problems which In [8] the authors have proposed methods for illumination can reduce the performance of FRS drastically [1], [2], [3]. and pose calculations which are also adopted in ISO/IEC Further, the technical report ISO/IEC TR 29794-5 [4] TR 29794-5 [4]. The quality of biometric images using defines different measures to observe the objective quality of different image degradations is evaluated in [9]. Further, in an input image. These measures should be applied at the time [10] authors have proposed a novel approach to assess the face of enrolment and if possible also for recognition attempts, to image quality for automatic border control systems. Although achieve optimal recognition performance. Most of the state- there are many works on facial image quality assessment of-art commercial biometric systems in today's world are well operating in conventional FRS, there are no such image quality equipped with quality assessment techniques to achieve good evaluations and detailed studies carried out for face samples biometric performance. The technical report ISO/IEC TR captured using smartphones to analyze the behavior of FRS 29794-1 [5] describes the methods for calculating the quality operating on smartphone. The key contributions of this work

Quality Estimation Before Recognition



Quality Estimation Before Recognition

Sample Quality in Face Recognition

Pose, Illumination and Expression

Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1-6. IEEE, 2017.

Kiran Raja, NTNU

Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x

EAB Workshop on Face Image Quality

Sample Quality in Face Recognition

https://9gag.com/gag/aP72BNg

Kiran Raja, NTNU

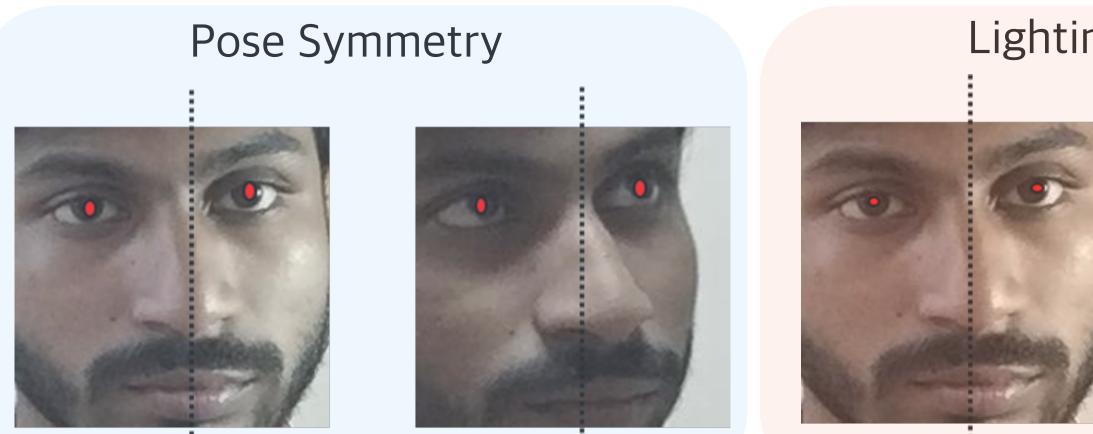
Quality versus Comparison Score

- Quality is directly proportional to recognition score [Grother2007, \bullet Bharadwaj2014]
- Can we use recognition scores to assess the quality assessment algorithms?
- ERC based predictive performance \bullet

[Grother2007] Patrick Grother and Elham Tabassi. Performance of biometric guality measures. 2007. [Bharadwaj2014] Samarth Bharadwaj, Mayank Vatsa, and Richa Singh. Biometric quality: a review of fingerprint, iris, and face. EURASIP journal on Image and Video Processing, 2014.

Efforts for face quality estimation using hand-crafted approaches

- Based on image properties such as brightness, contrast, and sharpness \bullet [Werner2006]
- Methods for illumination and pose calculations later adopted in ISO/IEC TR 29794ullet5 [Gao2007] [ISO29794-5]
- The quality of biometric images using different image degradations is evaluated in ullet[Youmaran2006].
- A face image quality for automatic border control systems using Gray-Level Cooccurence Matrix [Raghavendra2014].


[Werner2006] M. Werner and M. Brauckmann, "Quality values for face recognition," In NIST Biometric Quality Workshop, 2006. [Gao2007] X. Gao, S. Z. Li, R. Liu, and P. Zhang, "Standardization of face image sample quality." Springer, 2007. [ISO29794-5] ISO/IEC, ISO/IEC TR 29794-5 Information technology - Biometric sample quality - Part 5: Face image data. ISO/IEC, 2010. [Youmaran2006] R. Youmaran and A. Adler, "Measuring biometric sample quality in terms of biometric information." IEEE, 2006. [Raghavendra2014] R. Raghavendra, K. B. Raja, B. Yang, and C. Busch, "Automatic face quality assessment from video using gray level co-occurrence matrix: An empirical study on automatic border control system," 2014, pp. 438-443.

Kiran Raja, NTNU

EAB Workshop on Face Image Quality

Efforts for face quality estimation using hand-crafted approaches

Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1-6. IEEE, 2017.

Kiran Raja, NTNU

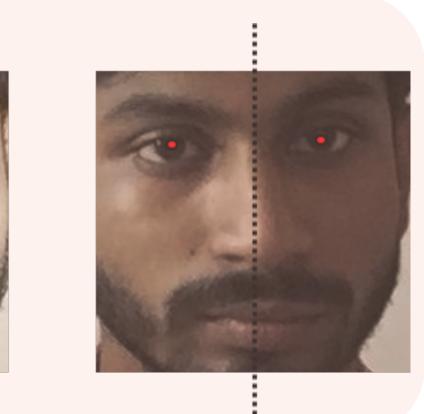
Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x

Lighting Symmetry

EAB Workshop on Face Image Quality

Lighting Symmetry

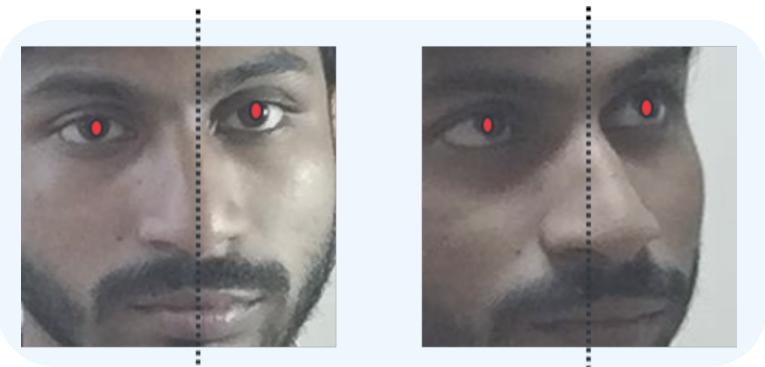
$$D_i = \mid H_{m*n}^L - H_{m*n}^R$$


 D_i is Earth Mover's Distance (EMD) between H_{m*n}^L, H_{m*n}^R histograms. Larger values of D_i signifies that image is more asymmetric in nature.

Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1-6. IEEE, 2017.

Kiran Raja, NTNU

Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x


EAB Workshop on Face Image Quality

Pose Symmetry

Suggested Approach from ISO/IEC TR 29794-5

- 1. Perform filtering using LBP filters.
- 2. Calculate the difference between filtered values for each pixel pair of sub-windows at left-right mirror locations.
- 3. Calculate a suitable sum of the absolute values of the differences.
- 4. The total of absolute values provides pose asymmetry.
- 5. The larger the value, higher is the rotation of image in either of the direction.

[ISO29794-5] ISO/IEC, ISO/IEC TR 29794-5 Information technology - Biometric sample quality - Part 5: Face image data. ISO/IEC, 2010.

EAB Workshop on Face Image Quality

Joint Estimation of Lighting and Pose Symmetry

$$I = \begin{bmatrix} I_x \\ I_y \end{bmatrix} = \begin{bmatrix} \partial I / \partial x \\ \partial I / \partial y \end{bmatrix}$$

$$I_g(x,y) = \sqrt{I_x^2 + I_y^2}$$

$$\theta(x,y) = \tan^{-1}\left(\frac{I_x}{I_y}\right)$$

$$E_v(x,y) = \begin{cases} I_g(x,y) \\ 0, \end{cases}$$

 $\text{if } 30^\circ \leq \theta(x,y) \leq 120^\circ$ otherwise

$$E_d = \frac{1}{N} \sum_x \sum_y E_v(x,y)$$

Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1-6. IEEE, 2017.

Kiran Raja, NTNU

Margin of 30-120 degrees

EAB Workshop on Face Image Quality

Overall Algorithm

Algorithm 1 Calculate QualityScore

Require: $N \ge 1$, where N is number of comparators used $i \leftarrow N$ while $i \neq 0$ do $i \leftarrow i - 1$ $G_i, B_i \leftarrow C_i$, where G_i and B_i are a set of good and bad images obtained using C_i comparator end while while $k < len(G_i)$ do $I \leftarrow G_i(k)$ if $I \in G_{i+1..N}$ then $GoodImage(k) \leftarrow I$ Good Feature Set $(k) \leftarrow (ISO Metric Values) I$ else Discard Iend if end while while $k1 < len(B_i)$ do $I \leftarrow B_i(k1)$ if $I \in B_{i+1..N}$ then $BadImage(k1) \leftarrow I$ Bad Feature Set $(k1) \leftarrow (ISO Metric Values) I$ else Discard I end if end while Trained Model \leftarrow (Random Forest Training) with Good Feature Set and Bad Feature Set Quality Score \leftarrow (TrainModel) Input Image

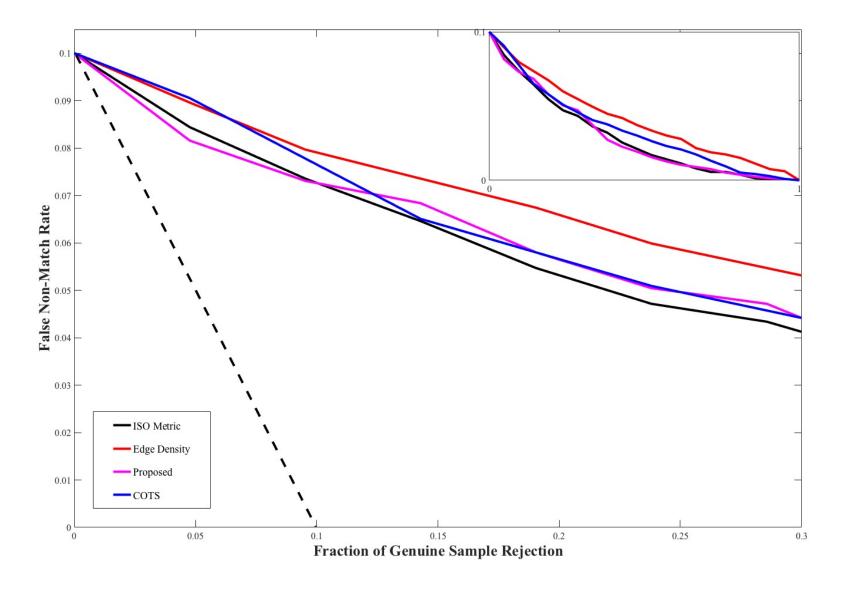
Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1-6. IEEE, 2017.

Kiran Raja, NTNU

Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x

EAB Workshop on Face Image Quality

Devices	No. Si	ıbjects	Total Images					
Devices	Session 1	Session 2	Session 1	Se	ession 2			
IPhone 6Plus	101	48	2222		1056			
Galaxy S7	101	48	2222	1056				
Image Set Details								
Device	Yaw	Pitch	Roll		D			
IPhone 6 Plus	2	3	3	2	5			
Galaxy S7	2	3	3	2	5			



EAB Workshop on Face Image Quality

FNMR decreases rapidly with the fraction of high quality sample rejected [Grother2007, Olsen2015]

$$\eta_{auc}^{erc} = \int_{0}^{1} ERC$$
$$\eta_{pauc20}^{erc} = \int_{0}^{0.2} ERC$$

[Grother2007] Patrick Grother and Elham Tabassi. Performance of biometric quality measures. 2007. [Olsen2015] M. A. Olsen, V. Smida, and C. Busch, "Finger image quality assessment features-definitions and evaluation," IET Biometrics, 2015. [Wasnik2017] Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1-6. IEEE, 2017.

Kiran Raja, NTNU

Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x

EAB Workshop on Face Image Quality

15

FNMR decreases rapidly with the fraction of high quality sample rejected [Grother2007, Olsen2015]

Quality Metrics		e 6 Plus se(ERC)	Samsung S7 Database(ERC)		
	η_{auc}^{erc}	η_{pauc20}^{erc}	η_{auc}^{erc}	η_{pauc20}^{erc}	
COTS	0.015	0.00	0.0285	0.0020	
Blur	0.086	0.013	0.097	0.015	
Sharpness	0.068	0.0096	0.074	0.010	
Exposure	0.068	0.0097	0.068	0.009	
Brightness	0.079	0.011	0.080	0.012	
Contrast	0.066	0.0092	0.070	0.01	
GCF	0.0664	0.009	0.071	0.010	
Pose Symmetry	0.087	0.013	0.089	0.013	
Light Symmetry	0.027	0.0015	0.07	0.011	
Proposed (ED)	0.0334	0.003	0.03	0.003	

Quality Metrics		e 6 Plus se(ERC)	Samsung S7 Database(ERC)		
	η_{auc}^{erc}	η_{pauc20}^{erc}	η_{auc}^{erc}	η_{pauc20}^{erc}	
COTS	0.0196	0.0049	0.033	0.0069	
Blur	0.0697	0.0149	0.0572	0.0117	
Sharpness	0.0503	0.0110	0.0483	0.0106	
Exposure	0.0523	0.0114	0.419	0.093	
Brightness	0.0618	0.0133	0.0537	0.0117	
Contrast	0.0507	0.0111	0.0413	0.0092	
GCF	0.0509	0.0111	0.0417	0.0093	
Pose Symmetry	0.0706	0.0151	0.0594	0.0128	
Light Symmetry	0.0196	0.0518	0.0049	0.0113	
Proposed (ED)	0.035	0.0070	0.039	0.008	

AUC and PAUC for at FNMR = 0.1

[Grother2007] Patrick Grother and Elham Tabassi. Performance of biometric quality measures. 2007. [Olsen2015] M. A. Olsen, V. Smida, and C. Busch, "Finger image quality assessment features-definitions and evaluation," IET Biometrics, 2015. [Wasnik2017] Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1–6. IEEE, 2017.

Kiran Raja, NTNU

Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x

EAB Workshop on Face Image Quality

AUC and PAUC for at FNMR = 0.01

16

FNMR decreases rapidly with the fraction of high quality sample rejected [Grother2007, Olsen2015]

$$\eta_{auc}^{erc} = \int_{0}^{1} ERC$$
$$\eta_{pauc20}^{erc} = \int_{0}^{0.2} ERC$$

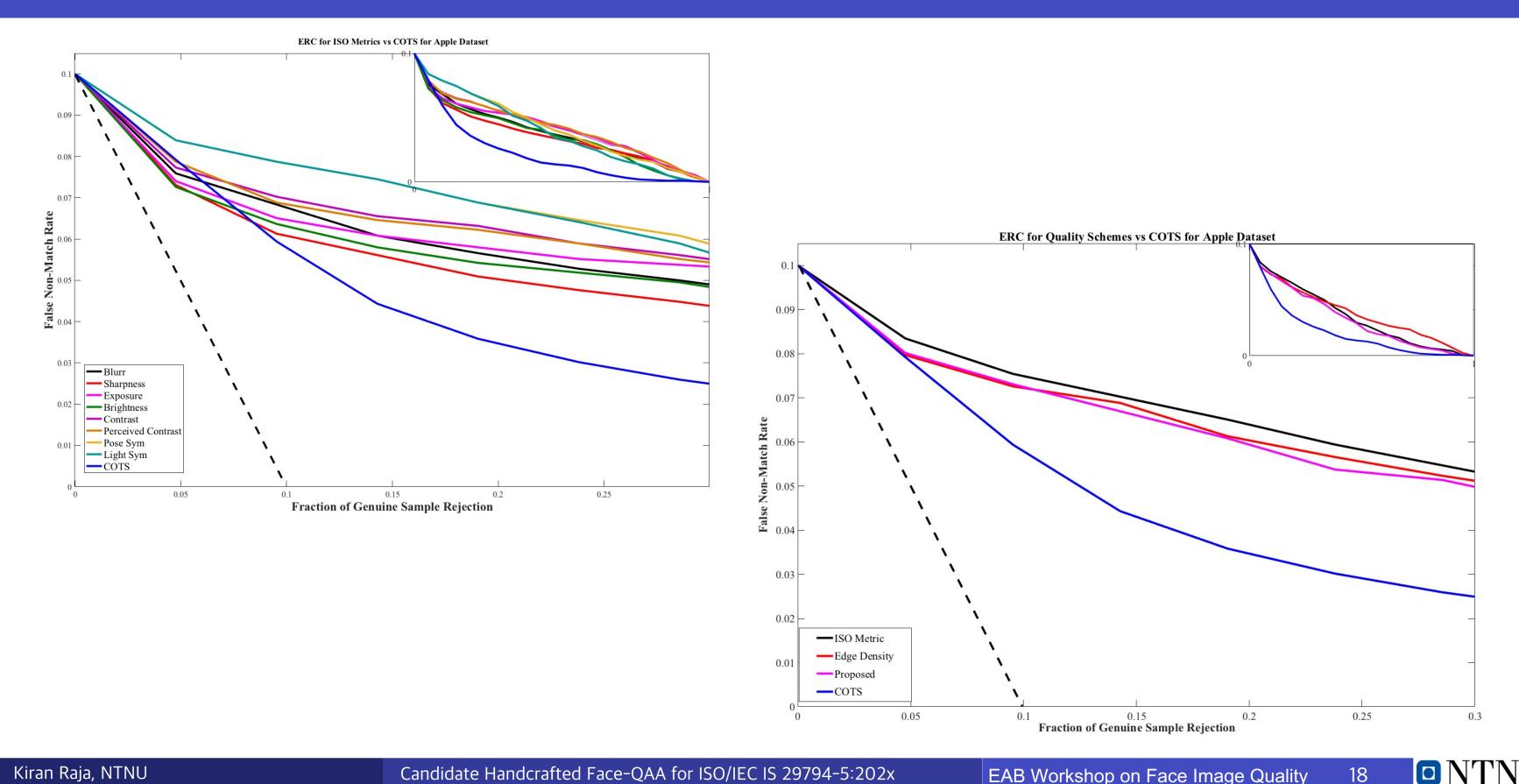
Quality Assessment Schemes		e 6 Plus ase(ERC)	Samsung S7 Database(ERC)		
COTS	η_{auc}^{erc} 0.015	η^{erc}_{pauc20} 0.00	η_{auc}^{erc} 0.0285	$\begin{array}{c} \eta^{erc}_{pauc20} \\ \textbf{0.0020} \end{array}$	
ISO + RF	0.030	0.00236	0.024	0.0010	
ISO + ED + RF	0.027	0.0018	0.023	0.0010	

Quality Assessment Schemes		e 6 Plus se(ERC)	Samsung S7 Database(ERC)		
COTS	η_{auc}^{erc} 0.0196	η^{erc}_{pauc20} 0.0049	$\frac{\eta^{erc}_{auc}}{0.0334}$	$\begin{array}{c} \eta_{pauc20}^{erc} \\ \textbf{0.0069} \end{array}$	
ISO + RF	0.0697	0.0149	0.0354	0.0000	
ISO + ED+ RF	0.032	0.006	0.0278	0.0060	

[Grother2007] Patrick Grother and Elham Tabassi. Performance of biometric quality measures. 2007. [Olsen2015] M. A. Olsen, V. Smida, and C. Busch, "Finger image quality assessment features-definitions and evaluation," IET Biometrics, 2015. [Wasnik2017] Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1-6. IEEE, 2017.

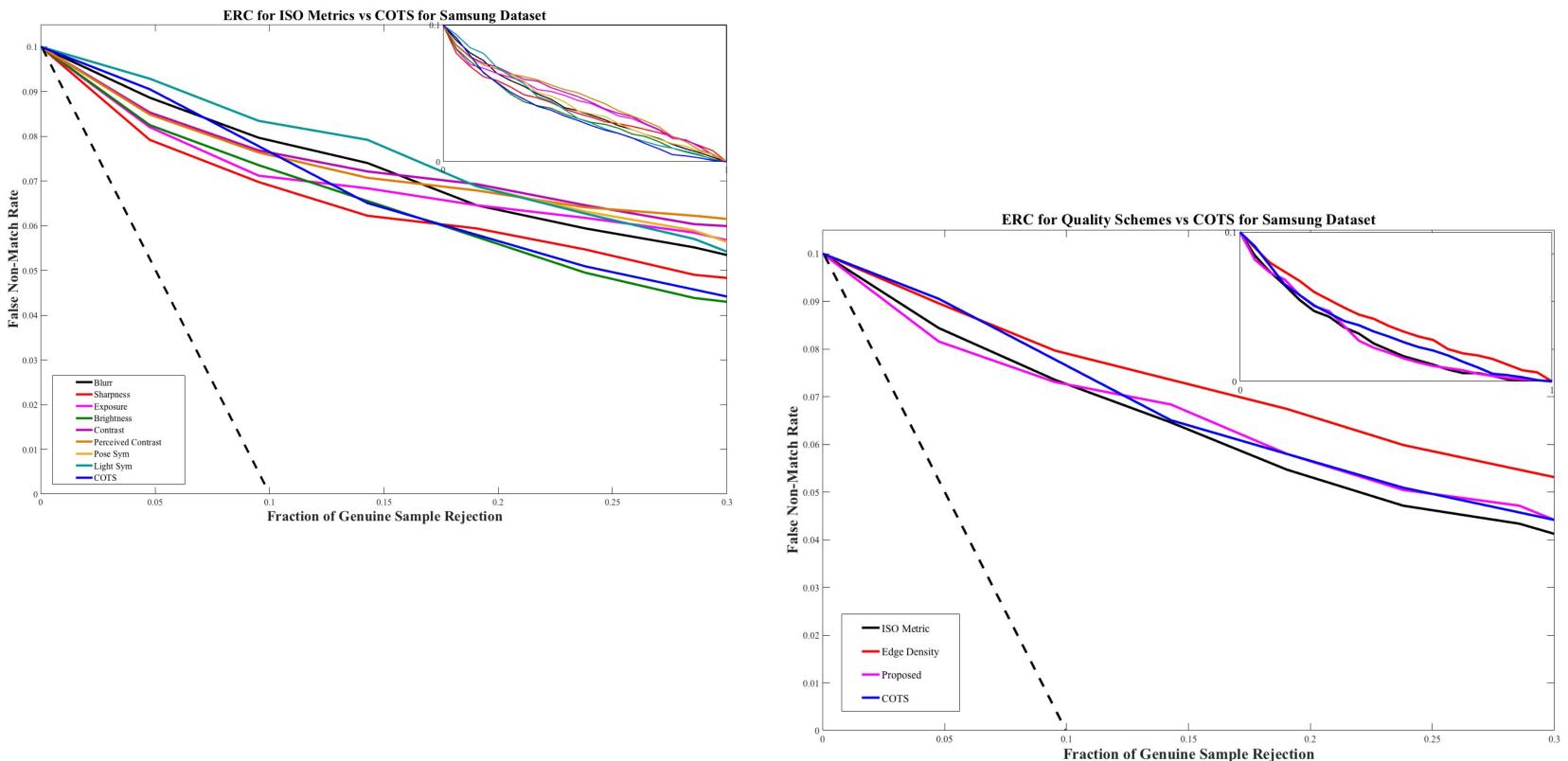
Kiran Raja, NTNU

Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x


EAB Workshop on Face Image Quality

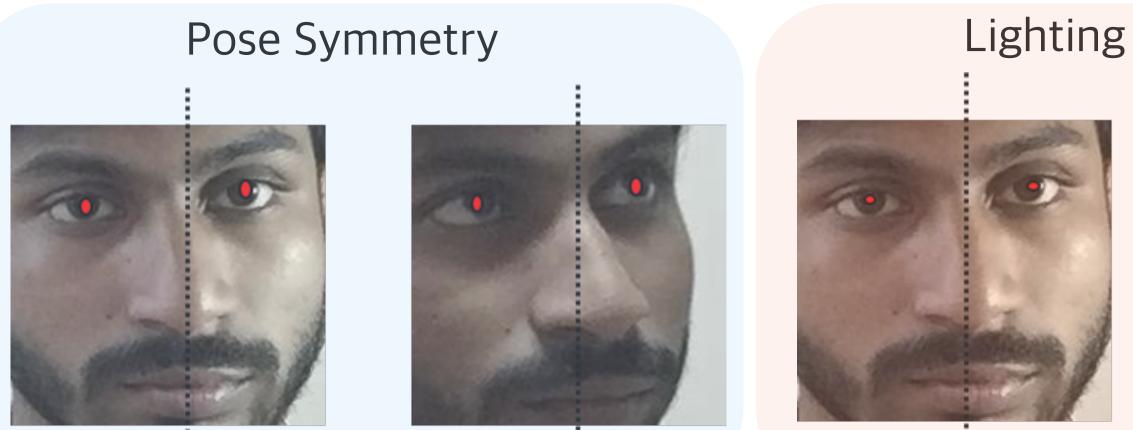
AUC and PAUC for at FNMR = 0.1

AUC and PAUC for at FNMR = 0.01


17

Results from candidate approach

EAB Workshop on Face Image Quality


Results from candidate approach

EAB Workshop on Face Image Quality

Candidate proposal – Joint estimation of pose and lighting symmetry

Pankaj Wasnik, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch. "Assessing face image quality for smartphone based face recognition system." In 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1-6. IEEE, 2017.

Kiran Raja, NTNU

Candidate Handcrafted Face-QAA for ISO/IEC IS 29794-5:202x

Lighting Symmetry

EAB Workshop on Face Image Quality

Contact

- Open positions for master thesis (physical and remote)
- Open positions for visiting PhD/Postdocs/faculty

Phone: +47-611-35-374

NORWEGIAN BIOMETRICS LABORATORY

About Publications

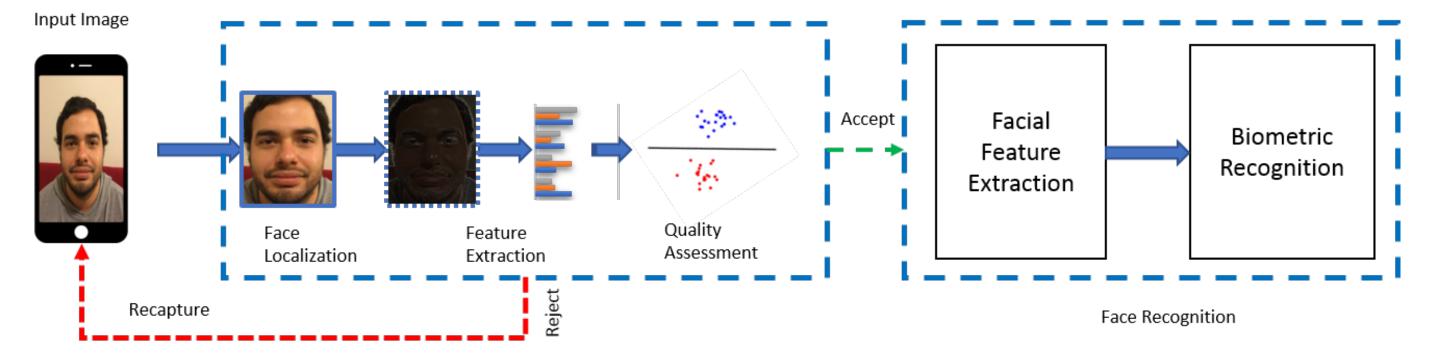
Norwegian Biometrics Laboratory is more than just a physical room at the campus. It is a discussion forum to brainstorm, to generate new ideas and projects and to present intermediate results. Thus it is an essential part of the Department of Information Security and Communication at the Norwegian University of Science and Technology (NTNU) and represents an active focus point with many international research projects.

Further, it is the intention of the laboratory to increase the awareness of biometrics in Norway via the Norwegian Biometric Forum and its potential involvement in the Norwegian legislation and to contribute to the international standardization in the field

Kiran Raja, NTNU

 \odot NTNU Studies \checkmark Research and innovation \checkmark Life and housing \checkmark About NTNU \checkmark

Search...


Q

The biometric research group at NTNU focuses on various biological and behavioral biometrics including 2D- and 3D-face recognition, fingerprint recognition, fingervein recognition, ear recognition, signature recognition, gait recognition, keystroke recognition, gesture recognition and mouse dynamics

Benchmarking against DL Approach

Automatic Face Quality Assessment

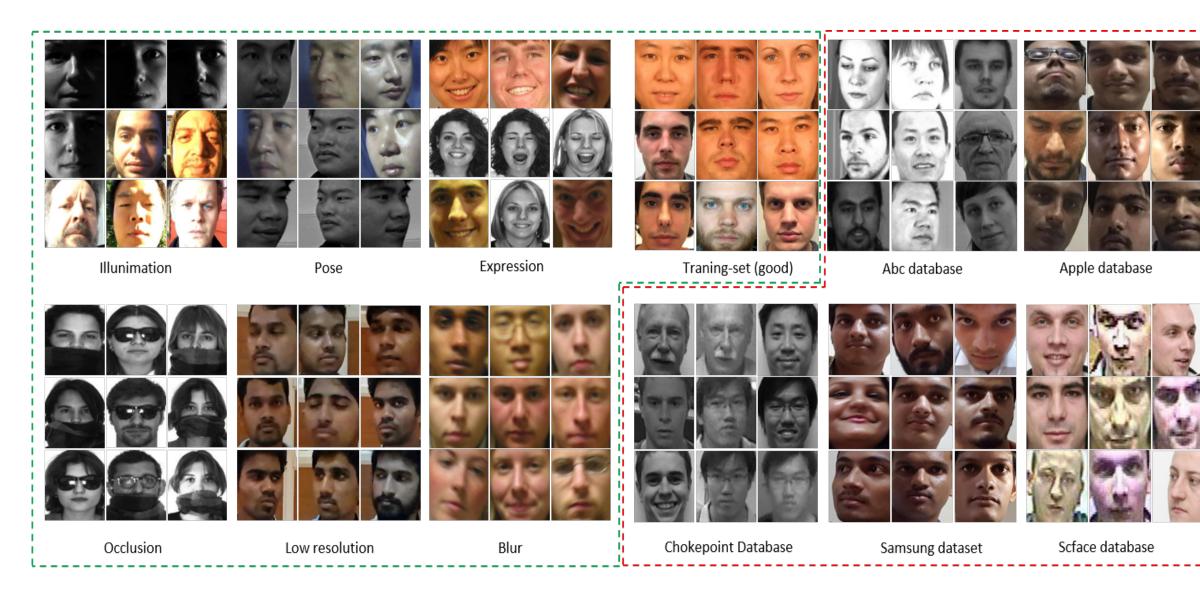
- Evaluated 14 quality algorithms 10 CNN based and 4 Non-CNN 1. Based
- 5 General CNNs, 3 Mobile CNNs, 2 SOTA CNNs [6, 7]
- 3 General Blind Quality Algorithms
- 1 Commercial VeryLook Mobile SDK
- Evaluated 5 databases 2 mobile and 3 general

Network Training:

- Transfer learning
- 2. and random cropping.
- Training Details: Batch size 64, 412 iterations/epochs.
- 5.

[Wasnik2018] Pankaj Wasnik, Raghavendra Ramachandra, Kiran Raja, Christoph Busch, "An Empirical Evaluation Of Deep Architectures On Generalization Of Smartphone-Based Face Image Quality Assessment." In the 9th IEEE International Conference On Biometrics: Theory, Applications, And Systems (BTAS 2018) Los Angeles, California, 2018. [Qi2018] Xuan Qi, Chen Liu, and Stephanie Schuckers. "Boosting face in video recognition via cnn based key frame extraction." In 2018 International Conference on Biometrics (ICB), pp. 132-139. IEEE, 2018.

[Zhang2017] Lijun Zhang, Lin Zhang, and Lida Li. "Illumination Quality Assessment for Face Images: A Benchmark and a Convolutional Neural Networks Based Model." In International Conference on Neural Information Processing, pp. 583–593. Springer, Cham, 2017


Kiran Raja, NTNU

Candidate Handcrafted Face-OAA for ISO/IEC IS 29794-5:202x

Data augmentation: translation in x and y-direction, mirroring along both axes

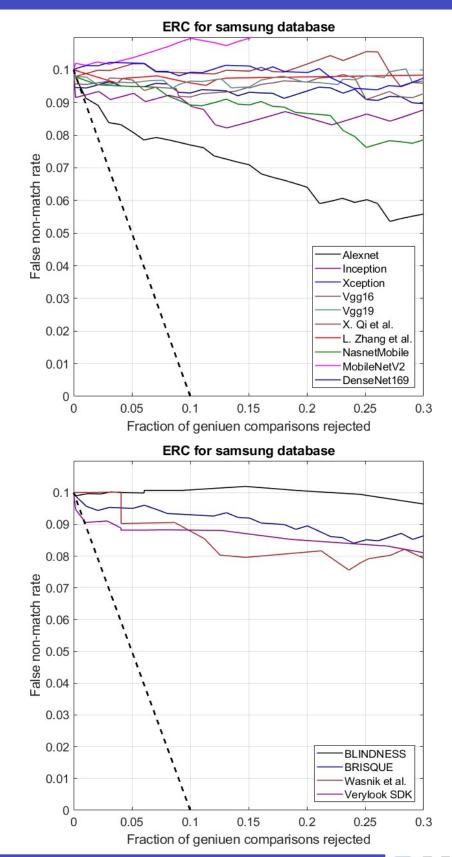
Optimizer: SGD with Momentum = 0.9, Initial Learning Rate = 0.0001. Validation: 10% of total training samples with validation frequency = 3.

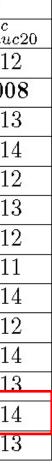
Database:

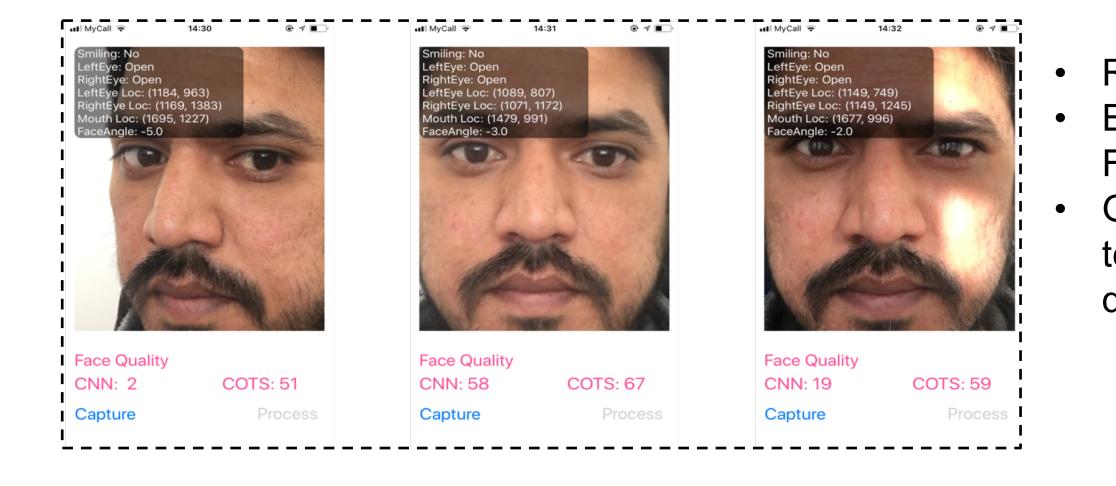
- Training database Consists of≈33000 good and bad quality images. 1.
- Evaluation database Consists of≈ 17000 face images from 419 2. subjects.
- Most of the used databases are publicly available 3.

Train Dataset

Database	Bad	Good	Data
Database	Images	Images	Characteristic
			Occlusion,
AR Face	2778	-	expressions,
			illumination
CAS-PEA	1250		Pose,
CAD-FEA	1200	-	illumination
Extended Yale	700	-	Illumination
FRGC	1580	8939	Blur,
FIGU	1000	0909	expression
NCKU face	4580	-	Pose
Our database	5605	7553	Illumination,
Our database	0000	1999	low resolution


Test Dataset


Database	No of Subject	No of Images	Is smartphone based database?
ABC	58	8950	No
Apple	101	1010	Yes
Chokepoint	29	2900	No
Samsung	101	1010	Yes
Scface	130	3120	No


Algorithm	A	BC	Ap	ople	Chok	epoint	Sam	sung	Scface	
Algorithm	η^{erc}_{auc}	η_{pauc20}^{erc}	η_{auc}^{erc}	η_{pauc20}^{erc}	η_{auc}^{erc}	η_{pauc20}^{erc}	η_{auc}^{erc}	η_{pauc20}^{erc}	η_{auc}^{erc}	η_{pau}^{erc}
Alexnet	0.064	0.013	0.057	0.011	0.027	0.008	0.054	0.010	0.048	0.01
Inception	0.035	0.009	0.084	0.012	0.045	0.012	0.072	0.012	0.027	0.00
Vgg16	0.089	0.013	0.068	0.012	0.072	0.011	0.077	0.013	0.096	0.01
Vgg19	0.072	0.013	0.074	0.014	0.053	0.013	0.074	0.014	0.095	0.01
Xception	0.064	0.011	0.070	0.012	0.071	0.012	0.093	0.014	0.058	0.01
Qi et al.	0.062	0.012	0.089	0.014	0.070	0.012	0.094	0.014	0.084	0.01
Zhang et al.	0.083	0.013	0.083	0.014	0.088	0.014	0.091	0.012	0.083	0.01
MobileNetV2	0.060	0.012	0.104	0.015	0.071	0.012	0.108	0.015	0.053	0.01
Densenet169	0.080	0.014	0.078	0.013	0.065	0.013	0.083	0.013	0.099	0.01
NasnetMobile	0.068	0.013	0.091	0.014	0.060	0.011	0.080	0.013	0.079	0.01
BLINDNESS	0.067	0.013	0.094	0.014	0.069	0.012	0.096	0.015	0.083	0.01
BRISQUE	0.077	0.012	0.067	0.013	0.094	0.012	0.099	0.014	0.087	0.01
Wasnik et al.	0.087	0.015	0.068	0.012	0.082	0.014	0.064	0.013	0.071	0.01
Verylook SDK	0.065	0.013	0.087	0.014	0.101	0.014	0.075	0.013	0.075	0.01

AUC and PAUC for at FNMR = 0.1

EAB Workshop on Face Image Quality

Results favor CNN models. ERC should be used to select a FQAA

Generalization is achieved in terms of Different challenges, databases, sensors

