MagFace: A Universal Representation for Face Recognition and Quality Assessment

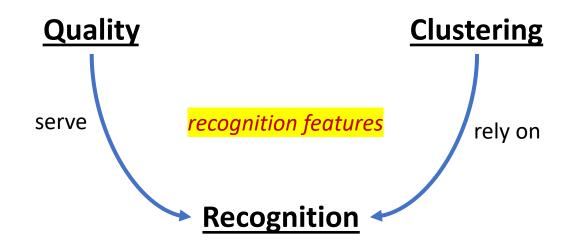
Qiang Meng, Shichao Zhao, Zhida Huang, Feng Zhou Algorithm Research, Aibee Inc.

Introduction

A typical face pipeline:

Introduction

Quality


filter out images whose recognition features are not robust.

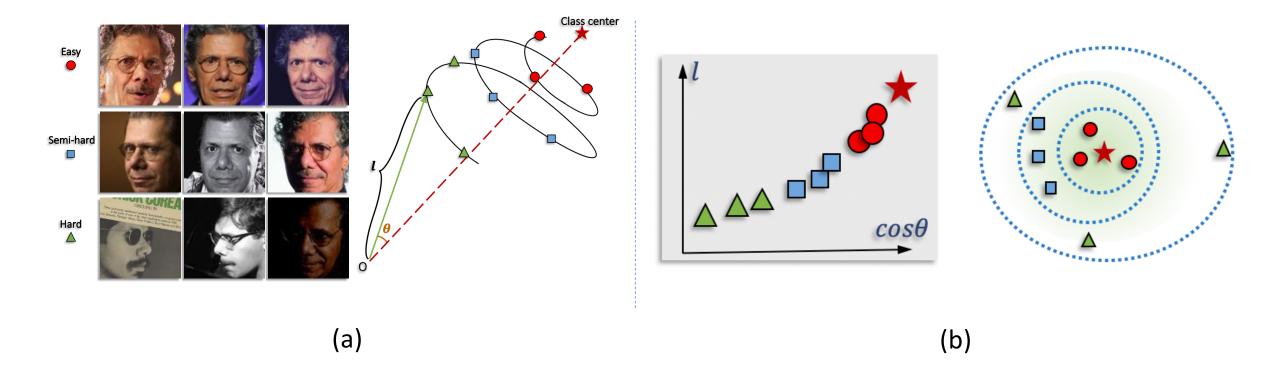
Recognition

recognize or verify faces by recognition features.

Clustering

use the distribution of recognition features to cluster images.

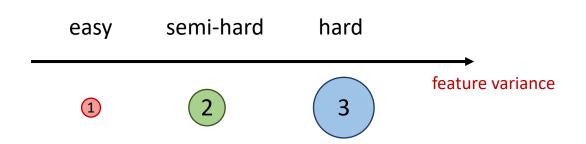
Goals

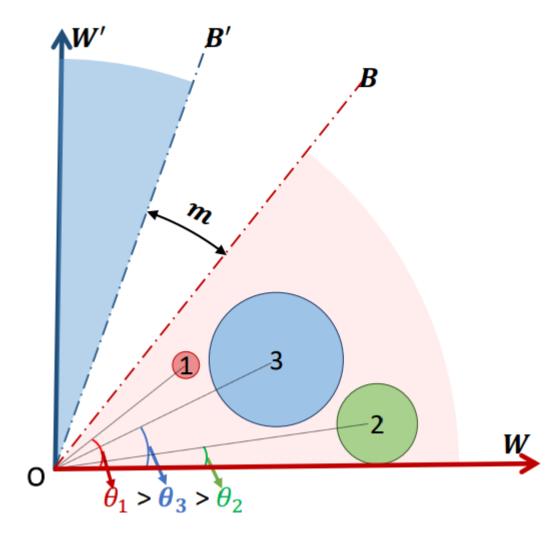

How can we connect all three tasks by recognition features?

MagFace!

A recognition loss which can

- 1. [quality] tell whether a face image can be recognized.
- 2. [recognition] fully utilize easy samples while prevent noisy samples from overwhelming the training.
- 3. [clustering] more suitable distributions.


Goals

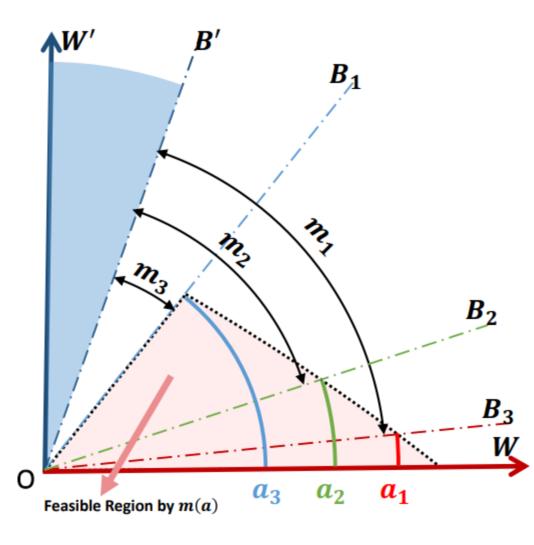


feature direction \rightarrow recognition feature magnitude \rightarrow quality feature distribution \rightarrow clustering

ArcFace:

$$L_i = -\log \frac{e^{s\cos(\theta_{y_i} + m)}}{e^{s\cos(\theta_{y_i} + m)} + \sum_{j \neq y_i} e^{s\cos\theta_j}}$$

ArcFace:


$$L_i = -\log \frac{e^{s\cos(\theta_{y_i} + m)}}{e^{s\cos(\theta_{y_i} + m)} + \sum_{j \neq y_i} e^{s\cos\theta_j}}$$

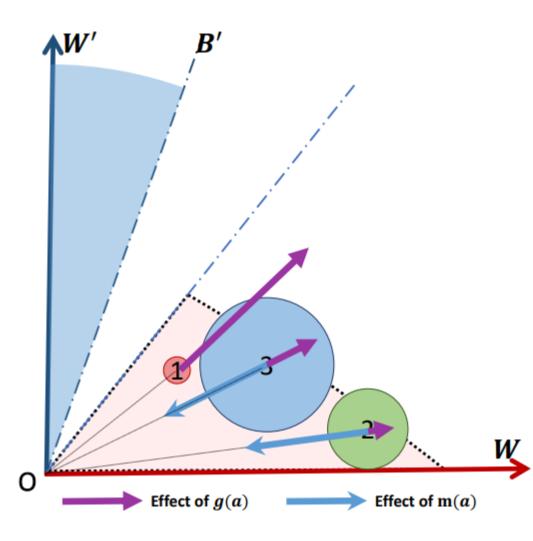
MagFace:

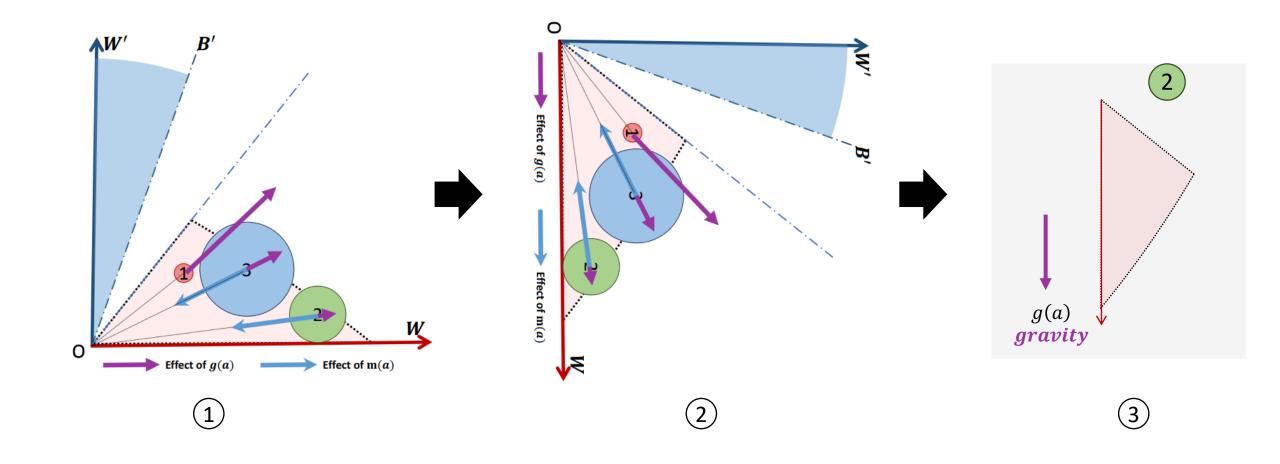
$$L_i = -\log \frac{e^{s\cos(\theta_{y_i} + m(a_i))}}{e^{s\cos(\theta_{y_i} + m(a_i))} + \sum_{j \neq y_i} e^{s\cos\theta_j}} + \lambda_g \cdot g(a_i)$$

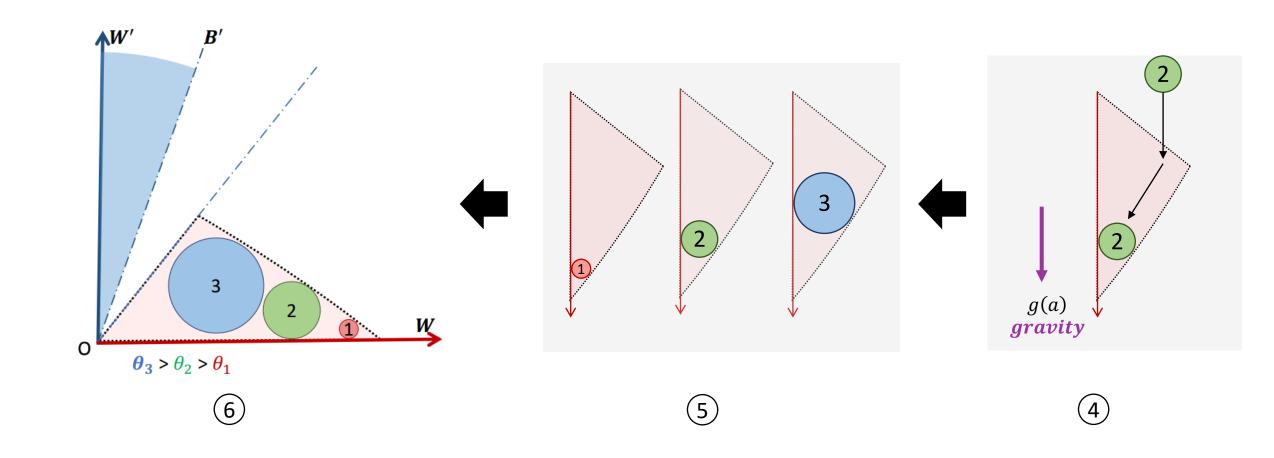
 $m(a_i)$ – the magnitude-aware angular margin.

 $g(a_i)$ – the regularizer.

ArcFace:


$$L_i = -\log \frac{e^{s\cos(\theta_{y_i} + m)}}{e^{s\cos(\theta_{y_i} + m)} + \sum_{j \neq y_i} e^{s\cos\theta_j}}$$


MagFace:


$$L_i = -\log \frac{e^{s\cos(\theta_{y_i} + m(a_i))}}{e^{s\cos(\theta_{y_i} + m(a_i))} + \sum_{j \neq y_i} e^{s\cos\theta_j}} + \lambda_g \cdot g(a_i)$$

 $m(a_i)$ – the magnitude-aware angular margin.

 $g(a_i)$ – the regularizer.

$$L_i = -\log \frac{e^{s\cos\left(\theta_{y_i} + m(a_i)\right)}}{e^{s\cos\left(\theta_{y_i} + m(a_i)\right)} + \sum_{j \neq y_i} e^{s\cos\theta_j}} + \lambda_g \cdot g(a_i)$$

In MagFace, $m(a_i)$, $g(a_i)$, λ_g are required to have the following constraints:

- 1. $m(a_i)$ is an increasing convex function in $[l_a, u_a]$ and $m'(a_i) \in (0, K]$, where K is a upper bound;
- 2. $g(a_i)$ is a strictly convex function with $g'(u_a) = 0$;
- 3. $\lambda_g \geq \frac{sK}{-g'(l_a)}$.

$$L_i = -\log \frac{e^{s\cos(\theta_{y_i} + m(\mathbf{a}_i))}}{e^{s\cos(\theta_{y_i} + m(\mathbf{a}_i))} + \sum_{j \neq y_i} e^{s\cos\theta_j}} + \lambda_g \cdot g(\mathbf{a}_i)$$

Property of Convergence. For $a_i \in [l_a, u_a]$, L_i is a strictly convex function which has a unique optimal solution a_i^* .

Property of Monotonicity. The optimal a_i^* is monotonically increasing as hardness of recognition decreases.

$$L_i = -\log \frac{e^{s\cos(\theta_{y_i} + m(a_i))}}{e^{s\cos(\theta_{y_i} + m(a_i))} + \sum_{j \neq y_i} e^{s\cos\theta_j}} + \lambda_g \cdot g(a_i)$$

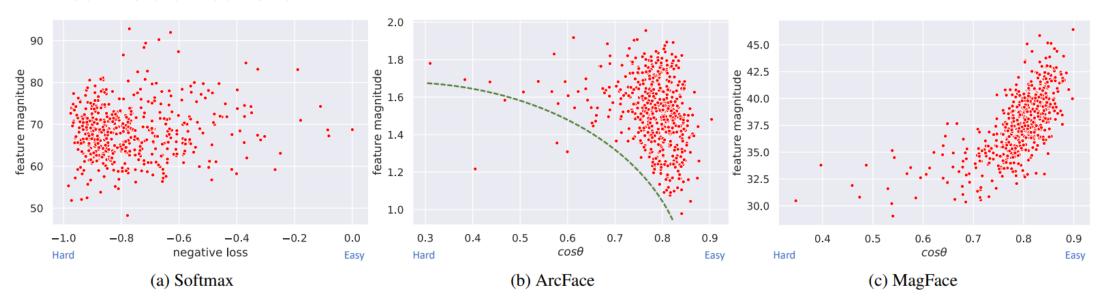
Property of Convergence. For $a_i \in [l_a, u_a]$, L_i is a strictly convex function which has a unique optimal solution a_i^* .

$$\frac{\partial^2 L_i}{(\partial a_i)^2} > 0 \qquad \frac{\partial L_i}{\partial a_i}(u_a) > 0 \qquad \frac{\partial L_i}{\partial a_i}(l_a) \le 0$$

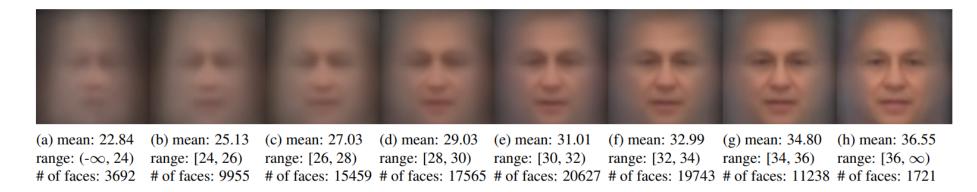
Property of Monotonicity. The optimal a_i^* is monotonically increasing as hardness of recognition decreases.

$$L_i = -\log rac{e^{s\cos\left(heta_{y_i} + m(oldsymbol{a_i})
ight)}}{e^{s\cos\left(heta_{y_i} + m(oldsymbol{a_i})
ight)} + \sum_{j
eq y_i} e^{s\cos heta_j}} rac{B}{B}$$

Property of Convergence. For $a_i \in [l_a, u_a]$, L_i is a strictly convex function which has a unique optimal solution a_i^* .


$$\frac{\partial^2 L_i}{(\partial a_i)^2} > 0 \qquad \frac{\partial L_i}{\partial a_i}(u_a) > 0 \qquad \frac{\partial L_i}{\partial a_i}(l_a) \le 0$$

Property of Monotonicity. The optimal a_i^* is monotonically increasing as hardness of recognition decreases.


$$\theta_{y_i}^1 < \theta_{y_i}^2 \Longrightarrow a_{i,1}^* > a_{i,2}^*. \qquad B_1 < B_2 \implies a_{i,1}^* > a_{i,2}^*.$$

Experiments — Visualizations

Feature distributions:

Mean faces on IJB-C:

Experiments — Visualizations

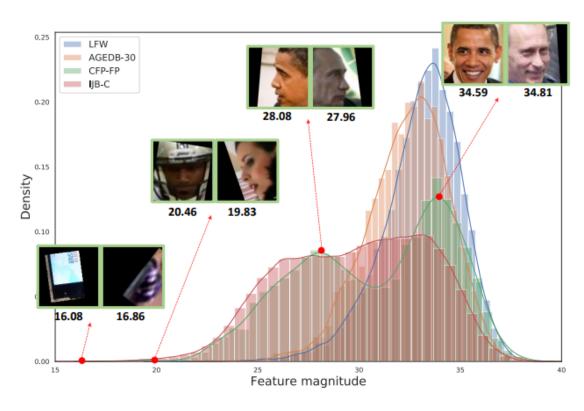
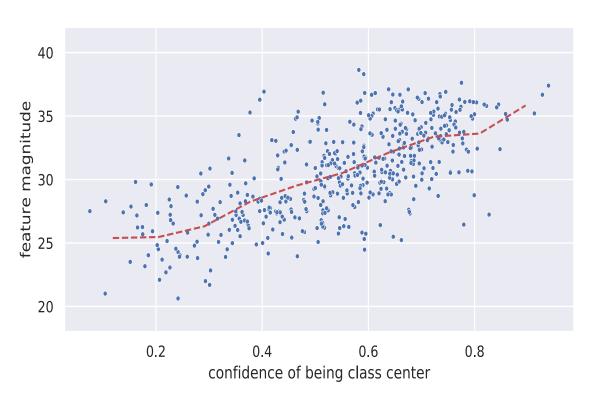
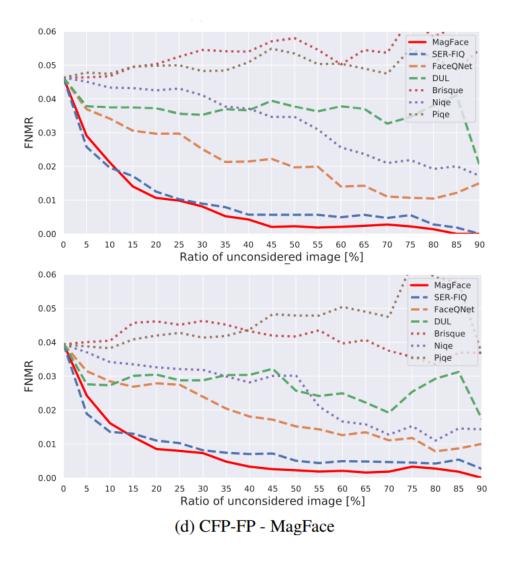



Figure: Distributions of magnitudes.

Figure : magnitudes v.s. confidences of being cluster centers.

Experiments — Quantitative Results


face recognition

Method	IJB-B (TAR@FAR)			IJB-C (TAR@FAR)			
	1e-6	1e-5	1e-4	1e-6	1e-5	1e-4	
VGGFace2*	-	67.10	80.00	-	74.70	84.00	
CenterFace*	-	-	-	-	78.10	85.30	
CircleLoss*	-	-	-	-	89.60	93.95	
ArcFace*	-	-	94.20	-	-	95.60	
Softmax	46.73	75.17	90.06	64.07	83.68	92.40	
SV-AM-Softmax	29.81	69.25	84.79	63.45	80.30	88.34	
SphereFace	39.40	73.58	89.19	68.86	83.33	91.77	
CosFace	40.41	89.25	94.01	87.96	92.68	95.56	
ArcFace	38.68	88.50	94.09	85.65	92.69	95.74	
MagFace	40.91	89.88	94.33	89.26	93.67	95.81	
MagFace +	42.32	90.36	94.51	90.24	94.08	95.97	

face clustering

Method	Net	IJB-B-512		IJB-B-1024		IJB-B-1845	
		F	NMI	F	NMI	F	NMI
K-means	ArcFace	66.70	88.83	66.82	89.48	66.93	89.88
	MagFace	66.75	88.86	67.33	89.62	67.06	89.96
AHC	ArcFace	69.72	89.61	70.47	90.54	70.66	90.90
	MagFace	70.24	89.99	70.68	90.67	70.98	91.06
DBSCAN	ArcFace	72.72	90.42	72.50	91.15	73.89	91.96
	MagFace	73.13	90.61	72.68	91.30	74.26	92.13
L-GCN	ArcFace	84.92	93.72	83.50	93.78	80.35	92.30
	MagFace	85.27	93.83	83.79	94.10	81.58	92.79

quality assessments

Summary

MagFace

- 1. a category of losses
- 2. only requires class labels
- 3. has rigorous theoretical guarantees
- 4. magnitudes can represents qualities
- 5. benefit recognition by balancing easy/semi-hard/hard samples
- 6. benefit clustering with
 - more reasonable distributions
 - the ability to predict cluster centers

Thank you!

https://github.com/IrvingMeng/MagFace

https://irvingmeng.github.io/

