

WORKSHOP ON FACE IMAGE QUALITY Facial image quality related problems and applications

Evaldas Borcovas, UAB Neurotechnology, Biometrics Team Lead 17th November 2021

Do we still need quality algorithms, when state of the art face recognition algorithm performs reasonably well?

Mainly how we view face quality metric

Let's call it a filter which is used for keeping the biometrics system healthy. In particular keeping the biometrics database clean from problematic impressions which have a high probability of generating *false positives* or *true negatives*.

WHAT PROBLEMS CAN WE HAVE?

HARDWARE NOT SUITABLE FOR THE TASK

Too far

Too light

Too dark

UNDEREXPOSURE

FACE OCCLUSION

FACE SHARPNESS

FALSE DETECTION

ANY OTHER PROBLEMS WHERE TRUE MATCHING PERFORMANCE DROPS

www.neurotechnology.com

DIFFERENT SCENARIOS OF FACE CAPTURING

SUPERVISED capturing with the **possibility of recapture**.

UNSUPERVISED capturing with the **possibility of recapture**.

UNSUPERVISED capturing with **no possibility of recapture**.

PRE COLLECTED DATA fixed set of data collected with or without any quality metrics applied.

SUPERVISED capturing with the possibility of recapture.

- Hardware is selected to provide the best possible quality.
- Face capture scene is prepared according to ICAO standard.
- All the quality and ICAO compliance features can be estimated automatically and recapture can be requested if needed by the supervisor.
- In this scenario face images usually are compliant with Portrait Quality (Reference Facial Images for MRTD).

UNSUPERVISED capturing with the **possibility of recapture**.

- Hardware is selected to provide the best possible quality.
- Face capture scene can be prepared.
- All the quality features can be estimated automatically and recapture can be requested if needed without the need of the supervisor.
- In this scenario face images usually are good quality as bad quality images are recaptured.

Our related product :
Ncheck Bio Attendance

UNSUPERVISED capturing with **no possibility of recapture**.

- Hardware can be selected to provide the best possible quality.
- Face capture scene can't be prepared. Faces can have different lighting conditions, pose, sharpness and etc.
- All the quality features can be estimated automatically and the quality algorithm can estimate which impressions of the faces are suitable for facial recognition.
- In this scenario face images usually are bad quality.

Our related product SentiVeillance SDK

PRE COLLECTED DATA fixed set of data collected with or without any quality metrics applied

- Hardware cannot be selected as images cannot be recaptured.
- Face capture scene can't be prepared. As images have already been captured.
- All the quality features can be estimated automatically and the quality algorithm can estimate which impressions of the face are suitable for facial recognition.
- As quality metrics can't be applied during the collection of data, the database can have various quality images.

- Several Examples:
 - NIST FRVT evaluation
 - Re enrollment of old database

FACE QUALITY PROBLEMS/SOLUTIONS DURING PANDEMIC

- One of the problems in face image is occlusion.
- Before the pandemic facial masks were very uncommon and could be marked as bad quality regarding facial occlusion.
- During the pandemic, facial masks became mandatory in public places.
- Facial quality algorithm had to adapt and make exceptions regarding facial occlusions and especially masks.

CHANGES OF ACCURACY RELATED TO FACIAL MASK

Figure 1: Examples of developer evolution of accuracy on masked and unmasked datasets. See Figures 10, 5, and 11

NISTIR 8331 Draft Supplement, Part 6B: Face recognition accuracy with face masks using post-Covid-19 algorithms 2021/03/04

POSSIBLE QUALITY VARIATIONS

Single value quality, as a predictor of true matching performance.

Multiple value quality, as several predictors of true matching performance.

Multiple value quality + ICAO checks.

SHOULD WE HAVE ONE GENERAL FACE QUALITY ALGORITHM LIKE NFIQ?

• Pros

- Positive impact on recognition accuracy.
- Effective filtering of matching scenarios.
- Possibility to gather a range of facial and environment statistics.

• Cons

- Trade Off between complexity, accuracy and speed.
- Limited control over different scenarios.

WHAT WOULD HELP FOR FURTHER DEVELOPMENT OF FACE QUALITY/RECOGNITION?

Knowing global problems of facial recognition algorithms in general.

Estimating which part of the facial recognition algorithm should fix it.

Evolving facial quality and recognition algorithms together.

The key to progress is problem identification and elimination.

THANK YOU FOR YOUR ATTENTION!

Evaldas Borcovas

(Biometrics team lead) UAB NEUROTECHNOLOGY, Laisves av. 125A, Vilnius LT-06118

http://www.neurotechnology.com