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Quantitative goals for quality scalar
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ISO/IEC 29794-1 delineates three aspects of the 
umbrella term quality: 

• Character: an expression of quality based on 
the inherent properties of the source from 
which the biometric sample is derived

• Fidelity: reflects the degree of the sample 
similarity to its source 

• Utility: an expression of quality based on utility 
reflects the predicted positive or negative 
contribution of an individual sample to the 
overall performance of a biometric system

Quality problems exist in the left tail of the genuine distribution
2



NIST Quality Assessment Evaluation [2019 – current]

Automated Face Image Quality Assessment
• Independent, sequestered evaluation quality assessment 

capabilities across large datasets
• “Black-box” testing
• Free of charge
• Ongoing testing + public reporting (report + interactive webpage)

FRVT Quality draft report out for public comment (last updated: September 2021)
Ongoing quality assessment submissions accepted!  Google: FRVT Quality

Tracks
• Quality Scalar
• Quality Vector (coming soon…)
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Participation
• China Electronics Import-Export Corp (CN)
• Lomonosov Moscow State University (RU)
• Paravision (US)
• Guangzhou Pixel Solutions (CN)
• Rank One Computing (US) x4
• Universidad Autónoma de Madrid + Joint 

Research Center (EU) x2
• Neurotechnology (LT)
• Xiamen University (CN)
• Dermalog (DE)
• Tevian (RU)

Many of these developers have also submitted 
recognition algorithms to FRVT 1:1



Quality Scalar… as predictor of true matching 
performance

Q = 95 Q = 90 Q = 55 Q = 40

Canonical Portrait Photograph, 
as standardized in ISO/IEC 
19794-5 (now superseded by 
ISO/IEC 39794-5). Verification(XIMAGE, XPORTRAIT)

Quality scalar = F(XIMAGE)

By implicitly predicting verification outcomes of comparing XIMAGE with a 
canonical portrait image of the same subject
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Use Case: Photo Acceptance

Q = 95 Q = 85 Q = 62 Q = 42

0100

Qc

ACCEPT REJECT
Image acceptance / rejection 
decision during enrollment 

• When only one image is available 
(first encounters) or

• Matching is not possible
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Use Case: Photo Acceptance

Q = 95 Q = 85 Q = 62 Q = 42

0100

Qc

ACCEPT REJECT
Image acceptance / rejection 
decision during enrollment 

• When only one image is available 
(first encounters) or

• Matching is not possible

Note: The best indicator of quality is RECOGNITION ACCURACY

With two or more images of the person, match it against the claimed 
reference sample -- a match result is the ultimate quality indicator 
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Use Case: Quality Summarization

Quality as a management 
indicator
• Survey over large collections

of images collected at certain
sites or times

• Monitor a statistic over 
ongoing operation – time, 
place, camera, organization, 
etc.
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Use Case: Photo Selection from Capture Stream
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Q = 40 Q = 45 Q = 47 Q = 46 Q = 39 Q = 62 Q = 68 Q = 55 Q = 39

Given K > 1 images of a person (e.g., from a capture stream), 
compute their quality values and select the best
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that are continuous 
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Quality values as predictors of FR outcomes
1. Mediocre 

Images
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Quality values as predictors of FR outcomes
1. Mediocre 

Images
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2. Quality Values 
from algorithm 42 57 22 48 20 39 48 55

3. Pristine reference 
images/canonical 

portraits

2.49 2.27 2.32 1.38 1.90 1.89 2.78 3.00
4. Mate match 

scores



Quality values as predictors of FR outcomes
1. Mediocre 

Images

2. Quality Values 
from algorithm 42 57 22 48 20 39 48 55

3. Pristine reference 
images

5. Match?
Match score threshold = 2.0 Y Y Y N N N Y Y
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Quality values as predictors of FR outcomes
1. Mediocre 

Images

2. Quality Values 
from algorithm 42 57 22 48 20 39 48 55

3. Pristine reference 
images

5. Match?
Match score threshold = 2.0 Y Y Y N N N Y Y

Can Q
predict
score?
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Low Q but 
high score

High Q 
but low 
score

Low Q + low score
6. Compute “prediction 

failures” for many Q values

2.49 2.27 2.32 1.38 1.90 1.89 2.78 3.00
4. Mate match 

scores



FNMR

Fraction of lowest quality scores removed 

Error vs. Reject
MATCH
SCORE

MATCH
YES?
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Quality values as predictors of genuine scores – Error vs. Reject

Quality algorithm Recognition algorithm

The matching threshold is set to give, for example, 
FNMR = 0.02 i.e. lowest 2 percent of mate scores

0.02
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MATCH
SCORE

MATCH
YES?

0.97 TRUE

0.91 TRUE

0.60 FALSE

0.85 TRUE

0.81 TRUE
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Quality values as predictors of genuine scores – Error vs. Reject

Discard n-% of lowest quality probes

Quality algorithm Recognition algorithm
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Quality values as predictors of genuine scores – Error vs. Reject

MATCH
SCORE

MATCH
YES?

0.97 TRUE

0.91 TRUE

0.60 FALSE

0.85 TRUE

0.81 TRUE

0.72 FALSE

0.90 TRUE

0.57 FALSE

Quality

97

94

74

68

57

32

29

27

Ref Probe

FNMR is ideally reduced as quality algorithm is used 
to discard low quality probes

Quality algorithm Recognition algorithm

FNMR

Fraction of lowest quality scores removed 

Error vs. Reject

Quality algorithm

Perfect 

0.02

0.02
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Improvement in FNMR as quality algorithm is used to discard low quality probes. The matching results are the false negatives
the algorithm named in the panel header. The matching threshold is set to give FNMR = 0.02 i.e. lowest 2 percent
of mate scores. Mate scores are from comparison of high quality visa−like application photos with medium quality airport arrivals
webcam photos. Quality is computed only on the webcam photos. The dotted line gives ideal performance.

Error vs. Reject - quality algorithm performance against target FR matchers
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paravision
quality algorithm

rankone
quality algorithm

Some developers can predict false negative decisions produced by 
their respective face recognition algorithms

webcam probevisa-like reference
photo

Mate scores are from comparison of 
high quality visa−like application 
photos with medium quality webcam 
photos (3 225 633 genuine scores)

Matching threshold set to give FNMR 
= 0.02 i.e. lowest 2% of mate scores

Quality is computed on the webcam 
photos (5 225 633 images)

Perfect Perfect 

Face Recognition Algorithms
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Improvement in FNMR as quality algorithm is used to discard low quality probes. The matching results are the false negatives
the algorithm named in the panel header. The matching threshold is set to give FNMR = 0.02 i.e. lowest 2 percent
of mate scores. Mate scores are from comparison of high quality visa−like application photos with medium quality airport arrivals
webcam photos. Quality is computed only on the webcam photos. The dotted line gives ideal performance.
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Current quality algorithms are not effective at predicting false negative 
decisions across different developer face recognition algorithms

webcam probevisa-like reference
photo

Perfect 

Perfect Perfect 

Perfect 

Face Recognition Algorithms

Error vs. Reject - quality algorithm performance against target FR matchers

Mate scores are from comparison of 
high quality visa−like application 
photos with medium quality webcam 
photos (3 225 633 genuine scores)

Matching threshold set to give FNMR 
= 0.02 i.e. lowest 2% of mate scores

Quality is computed on the webcam 
photos (5 225 633 images)



Error vs. Reject - quality performance against consensus across multiple FR 
matchers
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Ground truth for quality is set as 
false negatives from 33 face 
recognition algorithms

Consensus approach gives more 
weight to the problematic images 
generally

Algorithms are more effective 
when detecting the least 
recognizable images

Consensus across 33 face recognition algorithms

Perfect 
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Improvement in FNMR as quality algorithm is used to discard low quality probes. The matching results
are the pooled false negatives from 33 more accurate algorithms, one per developer. The matching threshold
is set to give FNMR = 0.01 i.e. lowest 1 percent of mate scores. Mate scores are from
comparison of high quality visa−like application photos with medium quality airport arrivals webcam photos.
Quality is computed only on the webcam photos. The dotted line gives ideal performance.
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Improvement in FNMR as quality algorithm is used to discard low quality probes. The matching results
are the pooled false negatives from 33 more accurate algorithms, one per developer. The matching threshold
is set to give FNMR = 0.05 i.e. lowest 5 percent of mate scores. Mate scores are from
comparison of high quality visa−like application photos with medium quality airport arrivals webcam photos.
Quality is computed only on the webcam photos. The dotted line gives ideal performance.
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• Incorrect sample acceptance rate (ISAR):
assignment of high quality to photo when 
it ultimately gives a false negative in 
recognition 

• Incorrection sample rejection rate (ISRR): 
assignment of low quality when the image 
would be matched by an FR engine 
correctly 

• Good for understanding operational 
deployment benefits

pixelall_003 rankone_009

ceiec_003 paravision_004

0.001 0.003 0.010 0.030 0.100 0.001 0.003 0.010 0.030 0.100

0.001

0.003

0.010

0.001

0.003

0.010

Incorrect sample rejection rate:
Frac. images with quality < Q but

matching above T with FMR(T) = 0.000100

In
co

rre
ct

 s
am

pl
e 

ac
ce

pt
an

ce
 ra

te
:

Fr
ac

. i
m

ag
es

 w
ith

 q
ua

lit
y 

>=
 Q

 b
ut

m
at

ch
in

g 
be

lo
w

 T
 w

ith
 F

M
R

(T
) =

 0
.0

00
10

0

QualityAlgorithm
ceiec_001
paravision_001

pixelall_000
rankone_000

rankone_001
rankone_002

Low quality samples
that do match

High quality 
samples that do 
not match

Quality measurement for use in photo acceptance -
Sample acceptance error tradeoff  (ISAR vs. ISRR)

20



Quality measurement for use in photo acceptance -
Sample acceptance error tradeoff  (ISAR vs. ISRR)

• Incorrect sample acceptance rate (ISAR):
assignment of high quality to photo when 
it ultimately gives a false negative in 
recognition 

• Incorrection sample rejection rate (ISRR): 
assignment of low quality when the image 
would be matched by an FR engine 
correctly 

• Good for understanding operational 
deployment benefits
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ISAR == FNMR at ISRR = 0
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• Incorrect sample acceptance rate (ISAR):
assignment of high quality to photo when 
it ultimately gives a false negative in 
recognition 

• Incorrection sample rejection rate (ISRR): 
assignment of low quality when the image 
would be matched by an FR engine 
correctly 

• Good for understanding operational 
deployment benefits
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Quality measurement for use in photo acceptance -
Sample acceptance error tradeoff  (ISAR vs. ISRR)
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Quality measurement for use as “summary indicator”

FR
alg⟶

FR
alg⟶

• Quality score binned 
to 13 levels

• Monotonic medians

• Variance is often high

• Within- vs. cross-developer
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Quality measurement for use as “summary indicator”

FR
alg⟶

FR
alg⟶

• Quality score binned 
to 13 levels

• Monotonic medians

• Variance is often high

• Within- vs. cross-developer
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Quality measurement for use as “summary indicator”

FR
alg⟶

FR
alg⟶

• Quality score binned 
to 13 levels

• Monotonic medians 

• Variance is often high

• Within- vs. cross-developer
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Quality measurement for use as “summary indicator”

FR
alg⟶

FR
alg⟶

• Quality score binned 
to 13 levels

• Monotonic medians 

• Variance is often high

• Within- vs. cross-developer
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Quality measurement for use as “summary indicator”

FR
alg⟶

FR
alg⟶

• Quality score binned 
to 13 levels

• Monotonic medians

• Variance is often high

• Within- vs. cross-developer
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Looking ahead…

• FRVT Quality Assessment Track
• Quality summarization (scalar value)
• Ongoing and will continue

• FRVT Quality Vector Track
• Starts Q1 2022
• Specific image defect detection (vector of values)
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Thank you!
frvt@nist.gov

Google: NIST FRVT Quality
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FRVT 1:1 Verification: https://pages.nist.gov/frvt/html/frvt11.html
FRVT 1:N Identification: https://pages.nist.gov/frvt/html/frvt1N.html
FRVT MORPH: https://pages.nist.gov/frvt/html/frvt_morph.html
FRVT Quality Assessment: https://pages.nist.gov/frvt/html/frvt_quality.html
FRVT Face Masks: https://pages.nist.gov/frvt/html/frvt_facemask.html
FRVT Paperless Travel: https://pages.nist.gov/frvt/html/frvt_paperless_travel.html
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