

EDC Considerations

Corresponding paper (under review): "Considerations on the Evaluation of Biometric Quality Assessment Algorithms"

Torsten Schlett, Christian Rathgeb, Juan Tapia, Christoph Busch

da/sec - Biometrics and Security Research Group Hochschule Darmstadt

2023-11-08

1. Introduction

- 2. Curve interpolation
- 3. Quality score normalization
- 4. Ranking stability
- 5. Summary

Error versus Discard Characteristic (EDC):

- Standardised in the next edition of ISO/IEC 29794-1.
- ▶ Previously more commonly known as the "Error versus Reject Characteristic" (ERC).
- Used to evaluate quality assessment (QA) algorithms.
 (Not just for face image QA, but following examples use face image data.)
- ► Usually involves multiple QA algorithms and one recognition system.

EDC computation:

- ► A comparison score per sample pair is computed by the recognition system.
- A quality score (QS) per sample is computed by each QA algorithm.
 (In this presentation higher QS values are meant to imply higher biometric utility.)
- An error value is computed as images/comparisons are discarded in order of the QSs. (In this presentation the False Non-Match Rate, FNMR, is used.)

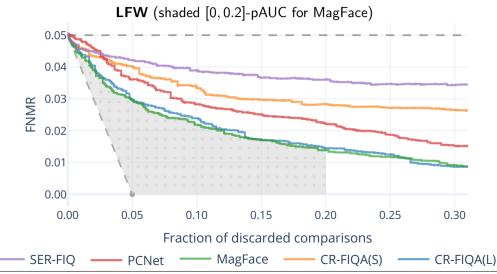
Introduction

Face image experiments use one face detector, one recognition system, and five QA models:

- ► Face detector model: RetinaFace-R50
 - Images are excluded if the face detection step fails.
 - Facial landmarks are used for preprocessing.

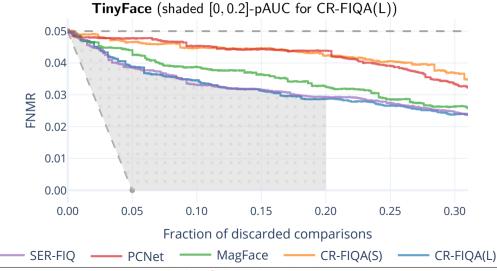
Preprocessed

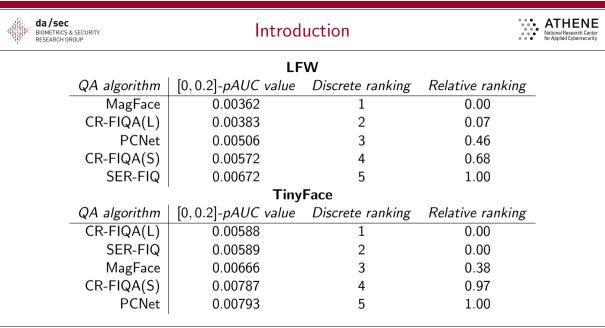
- ► Face recognition feature extraction model: ArcFace-R100-MS1MV2
- ► QA models: CR-FIQA(L), CR-FIQA(S), MagFace, PCNet, SER-FIQ (ArcFace)


Used face image datasets:

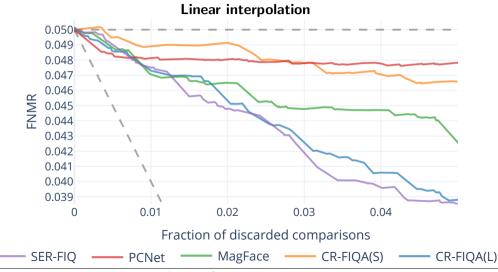
- **LFW** (Labeled Faces in the Wild)
- TinyFace (subsets Testing_Set/Gallery_Match and Testing_Set/Probe)

Introduction

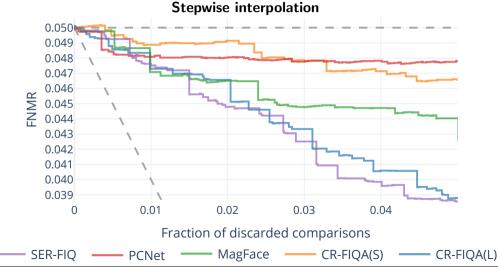




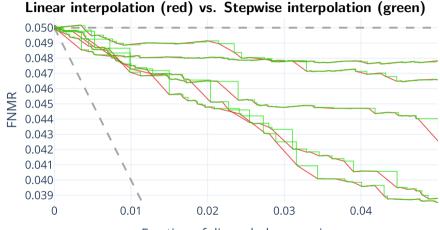
Introduction



Curve interpolation

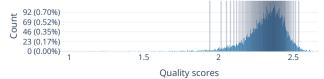


Curve interpolation



Curve interpolation

Fraction of discarded comparisons



"Raw" (e.g. floating-point) QSs can be mapped to "normalized" QSs. ISO/IEC 29794-1 in particular requires a **[0,100] integer range (i.e. 101 bins)** for the data interchange format. Different **calibration functions** and **calibration data sources** can be used for this.

Proportional calibration on LFW quality scores from CR-FIQA(L)

An example for bad calibration due to the used calibration data:

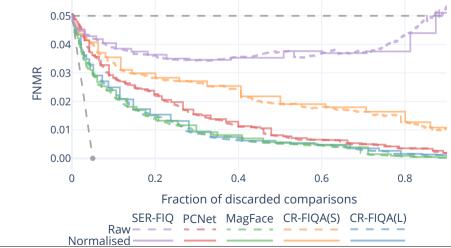
MinMax calibration on **TinyFace** guality scores over **LFW** guality scores

16 (0.20%) 8 (0.10%) 0 (0.00%) 0.5

Torsten Schlett

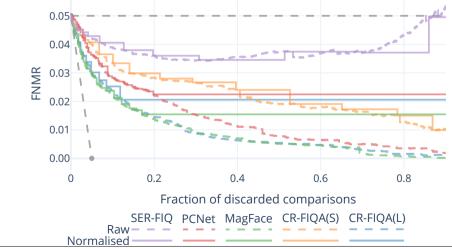
1.5

Ouality scores


2

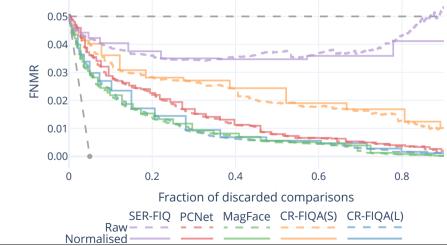
2.5

EDC plot on LFW, using the same dataset (LFW) as MinMax calibration source



Torsten Schlett

EDC plot on LFW, using the other dataset (TinyFace) as MinMax calibration source

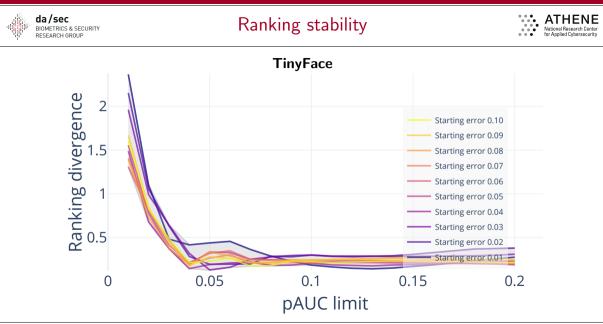

Torsten Schlett

Quality score normalization

EDC plot on LFW, using the combined dataset as MinMax calibration source

Torsten Schlett

The ranking "stability" is examined across different starting errors & pAUC discard limits:


- ▶ Starting error: Range [0.01, 0.10] with a 0.01 step (10 steps).
- ▶ pAUC discard limit: Range [0.01, 0.20] with a 0.01 step (20 steps).

For each of these 200 configurations the ranking divergence is computed:

RankingDivergence = $\sum_{i}^{n} |p_{i} - \bar{p}_{i}|$

- n is the number of QA algorithms, i.e. 5.
- \triangleright p_i is the relative ranking "placement" of one QA algorithm, i.e. a value in [0, 1].
- \bar{p}_i is the mean placement of one QA algorithm across all 200 configurations.
- The ranking divergence then is the sum of the distances between p_i and \bar{p}_i .
- ► A lower value implies greater "stability" (with respect to the other configurations).

Main points:

- Relative rankings (i.e. min-max normalized pAUC values) can be used to show how close each QA algorithm is to being the best or worst performing one.
- Stepwise curve interpolation should be preferred, to reflect the actual behaviour of the error with respect to the discard steps.
- QS normalisation depends on the calibration and will affect EDC curves/rankings. Even a simple min-max range calibration can be effective with the right values.
- ► For pAUC-based rankings, very low discard limits may not be reliable.

More can be found in the corresponding paper (currently under review): "Considerations on the Evaluation of Biometric Quality Assessment Algorithms" Preprint: https://arxiv.org/abs/2303.13294

Thank you!

Questions?

