

3D-Models for Pose and Neutrality Estimation

Marcel Grimmer

European Association for Biometrics

Face Image Quality Workshop 08.11.2023

Motivation

- Ongoing development of quality measures for different quality elements
 - ISO/IEC CD 29794-5
 - Open source face image quality (OFIQ) framework
- Find mathematical relationship between quality element and its impact on the recognition outcome

$$F(I) = Q \in [0, 100]$$

- How can generative models support in approximating *F*?
 - Head pose → Syn-YawPitch ^[1]
 - Facial expression neutrality → NeutrEx ^[2]

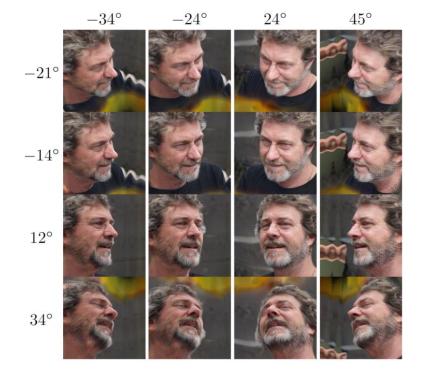
^[1] M. Grimmer et al., *Pose Impact Estimation on Face Recognition using 3D-Aware Synthetic Data with Application to Quality Assessment*, 2023. ^[2] M. Grimmer et al., *NeutrEx: A 3D Quality Component Measure on Facial Expression Neutrality*, IJCB, 2023.

Motivation

- Ongoing development of quality measures for different quality elements
 - ISO/IEC CD 29794-5
 - Open source face image quality (OFIQ) framework
- Find mathematical relationship between quality element and its impact on the recognition outcome

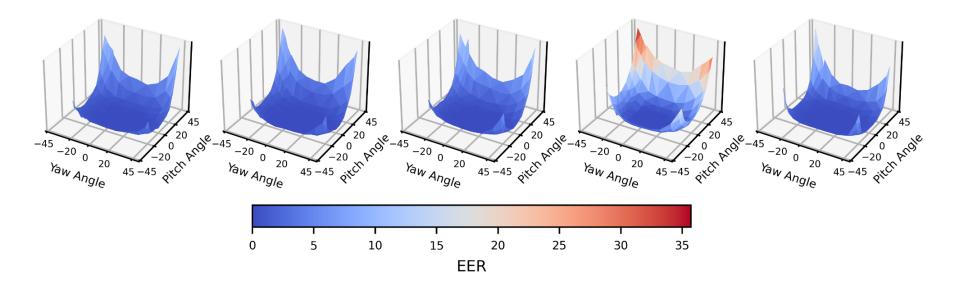
$$F(I) = Q \in [0, 100]$$

- How can generative models support in approximating *F*?
 - Head pose → Syn-YawPitch ^[1]
 - Facial expression neutrality → NeutrEx ^[2]

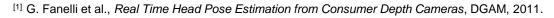

^[1] M. Grimmer et al., *Pose Impact Estimation on Face Recognition using 3D-Aware Synthetic Data with Application to Quality Assessment*, 2023. ^[2] M. Grimmer et al., *NeutrEx: A 3D Quality Component Measure on Facial Expression Neutrality*, IJCB, 2023.

Syn-YawPitch

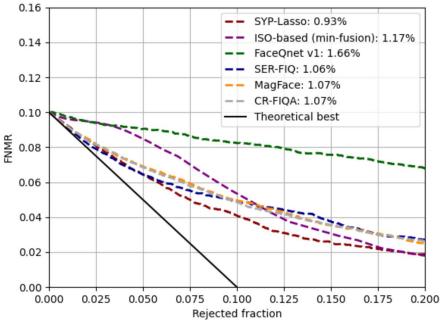
• Find function *F* to estimate utility *Q* based on pose angles

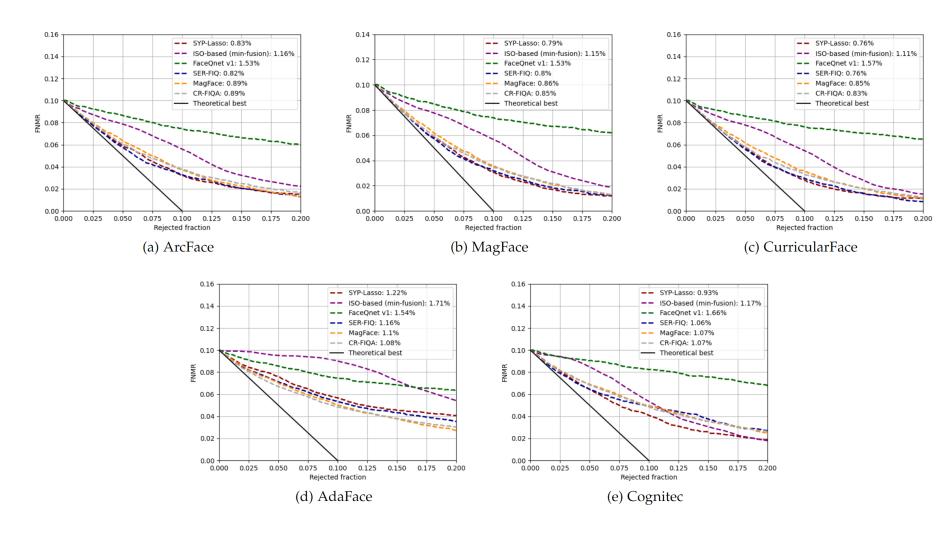

 $F(\phi_{\text{yaw}}, \phi_{\text{pitch}}) = Q$

- Use EG3D^[1] to generate synthetic dataset (Syn-YawPitch) with ...
 - 144,000 face images
 - 1,000 IDs
 - Various yaw-pitch angle combinations
- Use Syn-YawPitch to ...
 - 1. Analyse pose-utility relationship
 - 2. Compute lasso regression model (**SYP-Lasso**) to approximate *F*



^[1] ER. Chan et al., *Efficient geometry-aware 3D generative adversarial networks*, CVPR, 2022.


Pose Impact Analysis


- Pose-based Quality Measures
 - SYP-Lasso
 - ISO/IEC CD 29794-5
- Unified Quality Measures
 - FaceQnet v1
 - SER-FIQ
 - MagFace
 - CR-FIQA
- Evaluated on real pose estimation dataset (BIWI^[1])
 - 15k face images
 - Pose labels based on 3D sensor

(e) Cognitec

NTNU | Norwegian University of Science and Technology

Motivation

- Ongoing development of quality measures for different quality elements
 - ISO/IEC CD 29794-5
 - Open source face image quality (OFIQ) framework
- Find mathematical relationship between quality element and its impact on the recognition outcome

$$F(I) = Q \in [0, 100]$$

- How can generative models support in approximating *F*?
 - Head pose \rightarrow Syn-YawPitch ^[1]
 - Facial expression neutrality \rightarrow NeutrEx ^[2]

^[1] M. Grimmer et al., *Pose Impact Estimation on Face Recognition using 3D-Aware Synthetic Data with Application to Quality Assessment*, 2023. ^[2] M. Grimmer et al., *NeutrEx: A 3D Quality Component Measure on Facial Expression Neutrality*, IJCB, 2023.

NeutrEx Measure

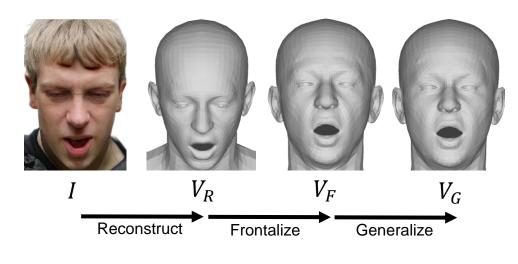
• Find function *F* to estimate utility *Q* based on facial expression neutrality

 $F(V_{\text{Probe}}, V_{\text{Anchor}}) = Q$

- NeutrEx operates within 3D Morphable Face Model: FLAME^[1]
 - Each face represented by 5,023 vertices
 - Full vertex correspondance
 - Parametrization of facial attributes
- Idea: Calculate cumulative Euclidean distances between V_{Probe} and V_{Anchor} to approximate *F*

^[1] T. Li et al., *Learning a model of facial shape and expression from 4D scans,* ToG, 2017.

NTNU | Norwegian University of Science and Technology

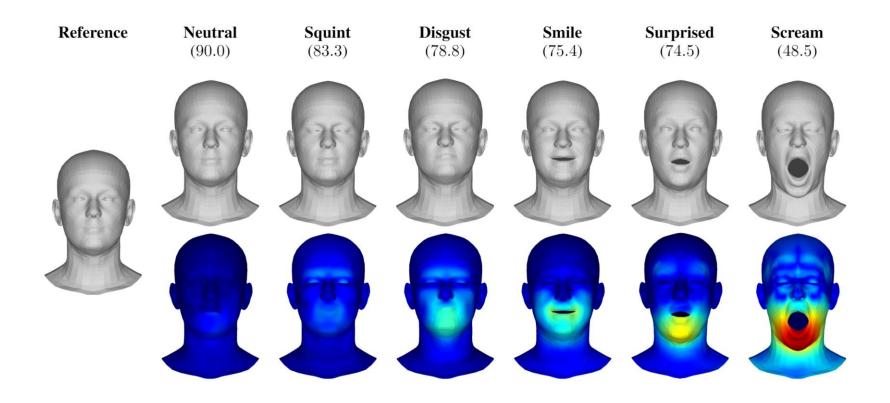

NeutrEx Measure

3D Face Normalization

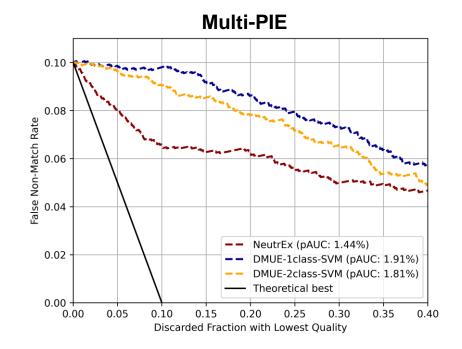
- Avoid identity-specific and posespecific distortions
- Compute expression-specific distances only

Neutral Anchor

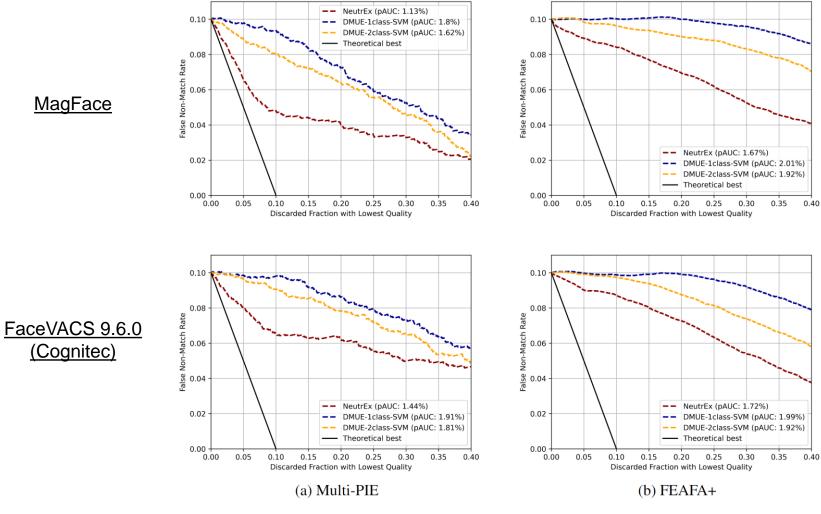
- $V_A = \frac{1}{|V_T|} \sum_{V \in V_T} V$
- Computed over training samples with neutral expression



 V_A (Neutral Anchor)



3D Neutrality Residuals



- Expression neutrality measures
 - NeutrEx
 - OFIQ candidate algorithms
- Evaluated on two datasets with expression variations
 - Multi-PIE^[1] (~2,5k controlled face images)
 - FEAFA+^[2] (~41k semicontrolled face images)

^[1]R. Gross et al., *Multi-PIE*, FG, 2008. ^[2]W. Gan et al., *FEAFA+: An Extended Well-Annotated Dataset for Facial Expression Analysis*, ICDIP, 2022.

MagFace

Conclusion

- (Deep) generative models are effective in development of quality measures
 - Controllability
 - Identity preservation
 - Representativeness of synthetic data
- Future work
 - FLAME encoder involves ~50 mio. parameters → optimize network efficiency
 - Investigate potential of diffusion models

Thank you! Questions?

E-Mail: marceg@ntnu.no

